Generalized Mittag-Leffler relaxation: Clustering-jump continuous-time random walk approach

被引:30
作者
Jurlewicz, Agnieszka [1 ]
Weron, Karina [2 ]
Teuerle, Marek [1 ]
机构
[1] Wroclaw Univ Technol, Hugo Steinhaus Ctr Stochast Methods, Inst Math & Comp Sci, PL-50370 Wroclaw, Poland
[2] Wroclaw Univ Technol, Inst Phys, PL-50370 Wroclaw, Poland
来源
PHYSICAL REVIEW E | 2008年 / 78卷 / 01期
关键词
D O I
10.1103/PhysRevE.78.011103
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A stochastic generalization of renormalization-group transformation for continuous-time random walk processes is proposed. The renormalization consists in replacing the jump events from a randomly sized cluster by a single renormalized (i.e., overall) jump. The clustering of the jumps, followed by the corresponding transformation of the interjump time intervals, yields a new class of coupled continuous-time random walks which, applied to modeling of relaxation, lead to the general power-law properties usually fitted with the empirical Havriliak-Negami function.
引用
收藏
页数:8
相关论文
共 41 条
[1]  
[Anonymous], APPL MATH
[2]  
[Anonymous], 1955, USPEKHI MAT NAUK
[3]   From continuous time random walks to the fractional Fokker-Planck equation [J].
Barkai, E ;
Metzler, R ;
Klafter, J .
PHYSICAL REVIEW E, 2000, 61 (01) :132-138
[4]   INTERPRETATION OF GENERAL DEBYE FUNCTION AS A DISTRIBUTION OF RELAXATION-TIMES [J].
BERTELSEN, JV ;
LINDGARD, A .
JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 1974, 12 (08) :1707-1709
[5]  
Feller W., 1966, INTRO PROBABILITY TH, VII
[6]   Hopping models of charge transfer in a complex environment: Coupled memory continuous-time random walk approach [J].
Gudowska-Nowak, E ;
Bochenek, K ;
Jurlewicz, A ;
Weron, K .
PHYSICAL REVIEW E, 2005, 72 (06)
[7]   Random walk models of electron tunneling in a fluctuating medium [J].
Gudowska-Nowak, E ;
Weron, K .
PHYSICAL REVIEW E, 2002, 65 (01)
[8]  
Gut, 1988, STOPPED RANDOM WALKS
[9]  
HONERKAMP J, 2002, STAT PHYS
[10]  
Jonscher AK., 1996, Universal Relaxation Law