Estimation in random coefficient autoregressive models

被引:55
作者
Aue, A
Horváth, L
Steinebach, J
机构
[1] Univ Cologne, Inst Math, D-50931 Cologne, Germany
[2] Univ Utah, Salt Lake City, UT 84112 USA
关键词
random coefficient autoregressive time series; parameter estimation; quasi-maximum likelihood; consistency; asymptotic normality;
D O I
10.1111/j.1467-9892.2005.00453.x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We propose the quasi-maximum likelihood method to estimate the parameters of an RCA(1) process, i.e. a random coefficient autoregressive time series of order 1. The strong consistency and the asymptotic normality of the estimators are derived under optimal conditions.
引用
收藏
页码:61 / 76
页数:16
相关论文
共 14 条
[1]  
Andel J., 1976, Mathematische Operationsforschung und Statistik, V7, P735, DOI 10.1080/02331887608801334
[2]   GARCH processes:: structure and estimation [J].
Berkes, I ;
Horváth, L ;
Kokoszka, P .
BERNOULLI, 2003, 9 (02) :201-227
[3]  
Billingsley P, 1968, CONVERGE PROBAB MEAS
[4]   STRICT STATIONARITY OF GENERALIZED AUTOREGRESSIVE PROCESSES [J].
BOUGEROL, P ;
PICARD, N .
ANNALS OF PROBABILITY, 1992, 20 (04) :1714-1730
[5]   THE STOCHASTIC EQUATION YN+1=ANYN+BN WITH STATIONARY COEFFICIENTS [J].
BRANDT, A .
ADVANCES IN APPLIED PROBABILITY, 1986, 18 (01) :211-220
[6]  
Chow Y. S., 1997, PROBABILITY THEORY
[7]  
Durrett R, 1996, PROBABILITY THEORY E
[8]  
NICHOLLS DF, 1982, RANDOM COEFFICIENT A
[9]   MEASURABILITY AND CONSISTENCY OF MINIMUM CONTRAST ESTIMATES [J].
PFANZAGL, J .
METRIKA, 1969, 14 (2-3) :249-272
[10]  
Quinn B. G., 1981, Journal of Time Series Analysis, V2, P185, DOI 10.1111/j.1467-9892.1981.tb00321.x