Cell motility dependence on adhesive wetting

被引:22
作者
Cao, Yuansheng [1 ]
Karmakar, Richa [1 ]
Ghabache, Elisabeth [1 ]
Gutierrez, Edgar [1 ]
Zhao, Yanxiang [2 ]
Groisman, Alex [1 ]
Levine, Herbert [3 ]
Camley, Brian A. [4 ,5 ]
Rappel, Wouter-Jan [1 ]
机构
[1] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA
[2] George Washington Univ, Dept Math, Washington, DC 20052 USA
[3] Rice Univ, Dept Bioengn, Ctr Theoret Biol Phys, Houston, TX 77005 USA
[4] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA
[5] Johns Hopkins Univ, Dept Biophys, Baltimore, MD 21218 USA
基金
美国国家科学基金会;
关键词
MIGRATION; MODEL; FLOW; MECHANICS; DYNAMICS;
D O I
10.1039/c8sm01832d
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Adhesive cell-substrate interactions are crucial for cell motility and are responsible for the necessary traction that propels cells. These interactions can also change the shape of the cell, analogous to liquid droplet wetting on adhesive substrates. To address how these shape changes affect cell migration and cell speed we model motility using deformable, 2D cross-sections of cells in which adhesion and frictional forces between cell and substrate can be varied separately. Our simulations show that increasing the adhesion results in increased spreading of cells and larger cell speeds. We propose an analytical model which shows that the cell speed is inversely proportional to an effective height of the cell and that increasing this height results in increased internal shear stress. The numerical and analytical results are confirmed in experiments on motile eukaryotic cells.
引用
收藏
页码:2043 / 2050
页数:8
相关论文
共 44 条
[1]   Modeling random crawling, membrane deformation and intracellular polarity of motile amoeboid cells [J].
Alonso, Sergio ;
Stange, Mai Ke ;
Beta, Carsten .
PLOS ONE, 2018, 13 (08)
[2]   An Adhesion-Dependent Switch between Mechanisms That Determine Motile Cell Shape [J].
Barnhart, Erin L. ;
Lee, Kun-Chun ;
Keren, Kinneret ;
Mogilner, Alex ;
Theriot, Julie A. .
PLOS BIOLOGY, 2011, 9 (05)
[3]   Local measurements of viscoelastic parameters of adherent cell surfaces by magnetic bead microrheometry [J].
Bausch, AR ;
Ziemann, F ;
Boulbitch, AA ;
Jacobson, K ;
Sackmann, E .
BIOPHYSICAL JOURNAL, 1998, 75 (04) :2038-2049
[4]   Phase-field approach to three-dimensional vesicle dynamics [J].
Biben, T ;
Kassner, K ;
Misbah, C .
PHYSICAL REVIEW E, 2005, 72 (04)
[5]   Pattern Formation in Active Fluids [J].
Bois, Justin S. ;
Juelicher, Frank ;
Grill, Stephan W. .
PHYSICAL REVIEW LETTERS, 2011, 106 (02)
[6]  
Brakke K. A., 1992, Exp. Math, V1, P141, DOI DOI 10.1080/10586458.1992.10504253
[7]   The Role of Cell Contraction and Adhesion in Dictyostelium Motility [J].
Buenemann, Mathias ;
Levine, Herbert ;
Rappel, Wouter-Jan ;
Sander, Leonard M. .
BIOPHYSICAL JOURNAL, 2010, 99 (01) :50-58
[8]   Periodic Migration in a Physical Model of Cells on Micropatterns [J].
Camley, Brian A. ;
Zhao, Yanxiang ;
Li, Bo ;
Levine, Herbert ;
Rappel, Wouter-Jan .
PHYSICAL REVIEW LETTERS, 2013, 111 (15)
[9]   Mechanisms of cell propulsion by active stresses [J].
Carlsson, A. E. .
NEW JOURNAL OF PHYSICS, 2011, 13
[10]   Traction Dynamics of Filopodia on Compliant Substrates [J].
Chan, Clarence E. ;
Odde, David J. .
SCIENCE, 2008, 322 (5908) :1687-1691