The Event Calculus in Probabilistic Logic Programming with Annotated Disjunctions

被引:0
|
作者
McAreavey, Kevin [1 ]
Bauters, Kim [2 ]
Liu, Weiru [2 ]
Hong, Jun [3 ]
机构
[1] Queens Univ Belfast, Belfast, Antrim, North Ireland
[2] Univ Bristol, Bristol, Avon, England
[3] Univ West England, Bristol, Avon, England
来源
AAMAS'17: PROCEEDINGS OF THE 16TH INTERNATIONAL CONFERENCE ON AUTONOMOUS AGENTS AND MULTIAGENT SYSTEMS | 2017年
基金
英国工程与自然科学研究理事会; 欧盟地平线“2020”;
关键词
The event calculus; event reasoning; probabilistic logic programming; ProbLog; annotated disjunction; INFERENCE;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We propose a new probabilistic extension to the event calculus using the probabilistic logic programming (PLP) language ProbLog, and a language construct called the annotated disjunction. This is the first extension of the event calculus capable of handling numerous sources of uncertainty (e.g. from primitive event observations and from composite event definitions). It is also the first extension capable of handling multiple sources of event observations (e.g. in multi-sensor environments). We describe characteristics of this new extension (e.g. rationality of conclusions), and prove some important properties (e.g. validity in ProbLog). Our extension is directly implementable in ProbLog, and we successfully apply it to the problem of activity recognition under uncertainty in an event detection data set obtained from vision analytics of bus surveillance video.
引用
收藏
页码:105 / 113
页数:9
相关论文
共 50 条
  • [31] A probabilistic interval-based event calculus for activity recognition
    Alexander Artikis
    Evangelos Makris
    Georgios Paliouras
    Annals of Mathematics and Artificial Intelligence, 2021, 89 : 29 - 52
  • [32] A probabilistic interval-based event calculus for activity recognition
    Artikis, Alexander
    Makris, Evangelos
    Paliouras, Georgios
    ANNALS OF MATHEMATICS AND ARTIFICIAL INTELLIGENCE, 2021, 89 (1-2) : 29 - 52
  • [33] Modeling PU learning using probabilistic logic programming
    Verreet, Victor
    De Raedt, Luc
    Bekker, Jessa
    MACHINE LEARNING, 2024, 113 (03) : 1351 - 1372
  • [34] VAEL: Bridging Variational Autoencoders and Probabilistic Logic Programming
    Misino, Eleonora
    Marra, Giuseppe
    Sansone, Emanuele
    NEURAL-SYMBOLIC LEARNING AND REASONING 2023, NESY 2023, 2023,
  • [35] Combining probabilistic logic programming with the power of maximum entropy
    Kern-Isberner, G
    Lukasiewicz, T
    ARTIFICIAL INTELLIGENCE, 2004, 157 (1-2) : 139 - 202
  • [36] Modeling PU learning using probabilistic logic programming
    Victor Verreet
    Luc De Raedt
    Jessa Bekker
    Machine Learning, 2024, 113 : 1351 - 1372
  • [37] Logic plus probabilistic programming plus causal laws
    Belle, Vaishak
    ROYAL SOCIETY OPEN SCIENCE, 2023, 10 (09):
  • [38] A new probabilistic constraint logic programming language based on a generalised distribution semantics
    Michels, Steffen
    Hommersom, Arjen
    Lucas, Peter J. F.
    Velikova, Marina
    ARTIFICIAL INTELLIGENCE, 2015, 228 : 1 - 44
  • [39] Ontology-mediated Queries over Probabilistic Data via Probabilistic Logic Programming
    van Bremen, Timothy
    Dries, Anton
    Jung, Jean Christoph
    PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT (CIKM '19), 2019, : 2437 - 2440
  • [40] Declarative probabilistic logic programming in discrete-continuous domains
    Dos Martires, Pedro Zuidberg
    De Raedt, Luc
    Kimmig, Angelika
    ARTIFICIAL INTELLIGENCE, 2024, 337