Metric spaces of fuzzy sets

被引:40
作者
Diamond, P [1 ]
Kloeden, P
机构
[1] Univ Queensland, Dept Math, St Lucia, Qld 4067, Australia
[2] Murdoch Univ, Sch Math & Phys Sci, Murdoch, WA 6150, Australia
关键词
fuzzy sets; L-p metrics; compact; locally compact;
D O I
10.1016/S0165-0114(99)80007-4
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Two classes of metrics are introduced for spaces of fuzzy sets. Their equivalence is discussed and basic properties established. A characterisation of compact and locally compact subsets is given in terms of boundedness and p-mean equileft-continuity, and the spaces shown to be locally compact, complete and separable metric spaces.
引用
收藏
页码:63 / 71
页数:9
相关论文
共 10 条
[1]   CHARACTERIZATION OF COMPACT SUBSETS OF FUZZY-SETS [J].
DIAMOND, P ;
KLOEDEN, P .
FUZZY SETS AND SYSTEMS, 1989, 29 (03) :341-348
[2]  
GRAVES LM, 1946, THEORY FUNCTIONS REA
[3]   FUZZY DIFFERENTIAL-EQUATIONS [J].
KALEVA, O .
FUZZY SETS AND SYSTEMS, 1987, 24 (03) :301-317
[4]   LIMIT-THEOREMS FOR FUZZY RANDOM-VARIABLES [J].
KLEMENT, EP ;
PURI, ML ;
RALESCU, DA .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1986, 407 (1832) :171-182
[5]   FUZZY DYNAMICAL-SYSTEMS [J].
KLOEDEN, PE .
FUZZY SETS AND SYSTEMS, 1982, 7 (03) :275-296
[6]  
KLOEDEN PE, 1987, P 2 IFSA C TOK JUL, V1, P368
[7]  
Lay Steven R., 1982, Pure and Applied Mathematics
[8]  
LYASHENKO N. N., 1983, J SOVIET MATH, V21, P76
[9]   THE CONCEPT OF NORMALITY FOR FUZZY RANDOM-VARIABLES [J].
PURI, ML ;
RALESCU, DA .
ANNALS OF PROBABILITY, 1985, 13 (04) :1373-1379
[10]   LP METRICS FOR COMPACT, CONVEX-SETS [J].
VITALE, RA .
JOURNAL OF APPROXIMATION THEORY, 1985, 45 (03) :280-287