Functional central limit theorems for certain statistics in an infinite urn scheme

被引:14
作者
Chebunin, Mikhail [1 ]
Kovalevskii, Artyom [1 ,2 ,3 ]
机构
[1] Novosibirsk State Univ, Novosibirsk, Russia
[2] Novosibirsk State Tech Univ, Novosibirsk, Russia
[3] Novosibirsk State Univ Econ & Management, Novosibirsk, Russia
关键词
Infinite urn scheme; Relative compactness; Slow variation;
D O I
10.1016/j.spl.2016.08.019
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We investigate a specific infinite urn scheme first considered by Karlin (1967). We prove functional central limit theorems for the total number of urns with at least k balls for any k >= 1. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:344 / 348
页数:5
相关论文
共 14 条
[11]  
KARLIN S, 1967, J MATH MECH, V17, P373
[12]  
Key E.S., 1992, Journal of Theoretical Probability, V5, P375
[13]   Divergence rates for the number of rare numbers [J].
Key, ES .
JOURNAL OF THEORETICAL PROBABILITY, 1996, 9 (02) :413-428
[14]  
Zakrevskaya N.S., 2001, Sibirskii Zhurnal Industrial'noi Matematiki, V4, P142