Functional central limit theorems for certain statistics in an infinite urn scheme

被引:14
作者
Chebunin, Mikhail [1 ]
Kovalevskii, Artyom [1 ,2 ,3 ]
机构
[1] Novosibirsk State Univ, Novosibirsk, Russia
[2] Novosibirsk State Tech Univ, Novosibirsk, Russia
[3] Novosibirsk State Univ Econ & Management, Novosibirsk, Russia
关键词
Infinite urn scheme; Relative compactness; Slow variation;
D O I
10.1016/j.spl.2016.08.019
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We investigate a specific infinite urn scheme first considered by Karlin (1967). We prove functional central limit theorems for the total number of urns with at least k balls for any k >= 1. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:344 / 348
页数:5
相关论文
共 14 条
[1]  
[Anonymous], PREPRINT
[2]  
[Anonymous], PROBABILITY SURVEYS
[3]  
[Anonymous], 1990, INTRO CONTINUITY EXT
[4]  
[Anonymous], 1999, CONVERGE PROBAB MEAS
[5]   Small counts in the infinite occupancy scheme [J].
Barbour, A. D. ;
Gnedin, A. V. .
ELECTRONIC JOURNAL OF PROBABILITY, 2009, 14 :365-384
[6]  
Barbour A.D., 2009, Alea, V6, P415
[7]  
Borovkov A. A., 2013, Probability Theory
[8]  
Chebunin M., 2014, Sib. Zh. Ind. Mat., V17, P135
[9]   CENTRAL LIMIT-THEOREMS FOR INFINITE URN MODELS [J].
DUTKO, M .
ANNALS OF PROBABILITY, 1989, 17 (03) :1255-1263
[10]   Local limit theorems for finite and infinite urn models [J].
Hwang, Hsien-Kuei ;
Janson, Svante .
ANNALS OF PROBABILITY, 2008, 36 (03) :992-1022