Limit-Deterministic Buchi Automata for Linear Temporal Logic

被引:65
作者
Sickert, Salomon [1 ]
Esparza, Javier [1 ]
Jaax, Stefan [1 ]
Kretinsky, Jan [1 ]
机构
[1] Tech Univ Munich, Munich, Germany
来源
COMPUTER AIDED VERIFICATION: 28TH INTERNATIONAL CONFERENCE, CAV 2016, PT II | 2016年 / 9780卷
关键词
LTL;
D O I
10.1007/978-3-319-41540-6_17
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Limit-deterministic Buchi automata can replace deterministic Rabin automata in probabilistic model checking algorithms, and can be significantly smaller. We present a direct construction from an LTL formula phi to a limit-deterministic Buchi automaton. The automaton is the combination of a non-deterministic component, guessing the set of eventually true G-subformulasof., and a deterministic component verifying this guess and using this information to decide on acceptance. Contrary to the indirect approach of constructing a non-deterministic automaton for phi and then applying a semi-determinisation algorithm, our translation is compositional and has a clear logical structure. Moreover, due to its special structure, the resulting automaton can be used not only for qualitative, but also for quantitative verification of MDPs, using the same model checking algorithm as for deterministic automata. This allows one to reuse existing efficient implementations of this algorithm without any modification. Our construction yields much smaller automata for formulas with deep nesting of modal operators and performs at least as well as the existing approaches on general formulas.
引用
收藏
页码:312 / 332
页数:21
相关论文
共 27 条
[1]  
[Anonymous], 2007, LOG METH COMPUT SCI
[2]  
Babiak T, 2012, LECT NOTES COMPUT SC, V7214, P95, DOI 10.1007/978-3-642-28756-5_8
[3]  
Baier C, 2008, PRINCIPLES OF MODEL CHECKING, P1
[4]  
Baier C., 2016, CAV 2016 IN PRESS
[5]  
Blahoudek Frantisek, 2013, Logic for Programming, Artificial Intelligence and Reasoning. 19th International Conference, LPAR-19, Proceedings: LNCS 8312, P164, DOI 10.1007/978-3-642-45221-5_12
[6]   Complementing Semi-deterministic Buchi Automata [J].
Blahoudek, Frantisek ;
Heizmann, Matthias ;
Schewe, Sven ;
Strejcek, Jan ;
Tsai, Ming-Hsien .
TOOLS AND ALGORITHMS FOR THE CONSTRUCTION AND ANALYSIS OF SYSTEMS (TACAS 2016), 2016, 9636 :770-787
[7]   THE COMPLEXITY OF PROBABILISTIC VERIFICATION [J].
COURCOUBETIS, C ;
YANNAKAKIS, M .
JOURNAL OF THE ASSOCIATION FOR COMPUTING MACHINERY, 1995, 42 (04) :857-907
[8]   An optimal automata approach to LTL model checking of probabilistic systems [J].
Couvreur, JM ;
Saheb, N ;
Sutre, G .
LOGIC FOR PROGRAMMING, ARTIFICIAL INTELLIGENCE, AND REASONING, PROCEEDINGS, 2003, 2850 :361-375
[9]  
Duret-Lutz Alexandre, 2014, International Journal of Critical Computer-Based Systems, V5, P31, DOI 10.1504/IJCCBS.2014.059594
[10]  
Duret-Lutz Alexandre, 2013, Automated Technology for Verification and Analysis. 11th International Symposium, ATVA 2013. Proceedings: LNCS 8172, P442, DOI 10.1007/978-3-319-02444-8_31