Absence of internal multidecadal and interdecadal oscillations in climate model simulations

被引:109
作者
Mann, Michael E. [1 ]
Steinman, Byron A. [2 ,3 ]
Miller, Sonya K. [1 ]
机构
[1] Penn State Univ, Dept Meteorol & Atmospher Sci, 514 Walker Bldg, University Pk, PA 16802 USA
[2] Univ Minnesota Duluth, Dept Earth & Environm Sci, 2205 E 5th St, Duluth, MN 55812 USA
[3] Univ Minnesota Duluth, Large Lakes Observ, 2205 E 5th St, Duluth, MN 55812 USA
基金
美国国家科学基金会;
关键词
SEA-SURFACE TEMPERATURE; ANTARCTIC CIRCUMPOLAR WAVE; SOUTHERN-HEMISPHERE; NORTHERN-HEMISPHERE; ATLANTIC-OCEAN; CMIP5; MODELS; VARIABILITY; PACIFIC; ATMOSPHERE; ENSO;
D O I
10.1038/s41467-019-13823-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
For several decades the existence of interdecadal and multidecadal internal climate oscillations has been asserted by numerous studies based on analyses of historical observations, paleoclimatic data and climate model simulations. Here we use a combination of observational data and state-of-the-art forced and control climate model simulations to demonstrate the absence of consistent evidence for decadal or longer-term internal oscillatory signals that are distinguishable from climatic noise. Only variability in the interannual range associated with the El Nino/Southern Oscillation is found to be distinguishable from the noise background. A distinct (40-50 year timescale) spectral peak that appears in global surface temperature observations appears to reflect the response of the climate system to both anthropogenic and natural forcing rather than any intrinsic internal oscillation. These findings have implications both for the validity of previous studies attributing certain long-term climate trends to internal low-frequency climate cycles and for the prospect of decadal climate predictability.
引用
收藏
页数:9
相关论文
共 103 条
[1]  
Alghamdi O.A., 2009, Proceedings of the Fourth IEEE Int. Conf. on Cognitive Radio Oriented Wireless Networks and Communications (CROWNCOM), P1, DOI [DOI 10.1109/CROWNCOM.2009.5188952, 10.1109/CROWNCOM.2009.5188952]
[2]  
Allan R., 2000, NI O SO OSCILLATION, P3
[3]   Joint Spatiotemporal Variability of Global Sea Surface Temperatures and Global Palmer Drought Severity Index Values [J].
Apipattanavis, Somkiat ;
McCabe, Gregory J. ;
Rajagopalan, Balaji ;
Gangopadhyay, Subhrendu .
JOURNAL OF CLIMATE, 2009, 22 (23) :6251-6267
[4]  
BARNETT TP, 1993, J CLIMATE, V6, P1545, DOI 10.1175/1520-0442(1993)006<1545:EAERPP>2.0.CO
[5]  
2
[6]   Historical forcings as main drivers of the Atlantic multidecadal variability in the CESM large ensemble [J].
Bellomo, Katinka ;
Murphy, Lisa N. ;
Cane, Mark A. ;
Clement, Amy C. ;
Polvani, Lorenzo M. .
CLIMATE DYNAMICS, 2018, 50 (9-10) :3687-3698
[7]   The Role of Forcings in the Twentieth-Century North Atlantic Multidecadal Variability: The 1940-75 North Atlantic Cooling Case Study [J].
Bellucci, A. ;
Mariotti, A. ;
Gualdi, S. .
JOURNAL OF CLIMATE, 2017, 30 (18) :7317-7337
[8]   Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability [J].
Booth, Ben B. B. ;
Dunstone, Nick J. ;
Halloran, Paul R. ;
Andrews, Timothy ;
Bellouin, Nicolas .
NATURE, 2012, 484 (7393) :228-U110
[9]   Low-Pass Filtering, Heat Flux, and Atlantic Multidecadal Variability [J].
Cane, Mark A. ;
Clement, Amy C. ;
Murphy, Lisa N. ;
Bellomo, Katinka .
JOURNAL OF CLIMATE, 2017, 30 (18) :7529-7553
[10]  
Cheung AH, 2017, J CLIMATE, V30, P4763, DOI [10.1175/jcli-d-16-0712.1, 10.1175/JCLI-D-16-0712.1]