EFFICIENT LMI-BASED QUADRATIC STABILITY AND STABILIZATION OF PARAMETER-DEPENDENT INTERVAL SYSTEMS WITH APPLICATIONS

被引:0
作者
Cai, Guangbin [1 ,2 ]
Hu, Changhua [1 ]
Duan, Guangren [2 ]
机构
[1] Xian Res Inst High Tech, Dept Automat, Unit 302, Xian 710025, Peoples R China
[2] Harbin Inst Technol, Ctr Control Theory & Guidance Technol, Harbin 150001, Peoples R China
来源
INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL | 2012年 / 8卷 / 3A期
基金
中国国家自然科学基金;
关键词
Parameter-dependent interval systems (PDISs); Quadratic stability; Quadratic stabilization; D-stabilization; Linear matrix inequalities (LMIs); Flight control; UNCERTAIN SYSTEMS; POLE-PLACEMENT;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper is concerned with the problem of quadratic stability and stabilization for continuous-time linear parameter-dependent interval systems. Differing from previous results in the analysis and control design of interval systems, the new necessary and sufficient conditions proposed in this paper for the quadratic stability, quadratic stabilization and D-stabilization are based on parameter-dependent model representation of interval systems. In the quadratic framework, an approach based on a vertex result on interval uncertain parameters is proposed. This allows the solvability conditions to be presented in terms of a set of parameterized linear matrix inequalities which can be efficiently solved by using standard numerical softwares. A linearized longitudinal dynamic model of the flight control system of a supersonic cruise missile is presented to illustrate the effectiveness and advantage of the proposed methods.
引用
收藏
页码:1943 / 1954
页数:12
相关论文
共 21 条
[1]   Necessary and sufficient stability condition of fractional-order interval linear systems [J].
Ahn, Hyo-Sung ;
Chen, YangQuan .
AUTOMATICA, 2008, 44 (11) :2985-2988
[2]   POLE ASSIGNMENT OF LINEAR UNCERTAIN SYSTEMS IN A SECTOR VIA A LYAPUNOV-TYPE APPROACH [J].
ARZELIER, D ;
BERNUSSOU, J ;
GARCIA, G .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1993, 38 (07) :1128-1132
[3]  
Boyd S., 1994, LINEAR MATRIX INEQUA
[4]   Robust pole placement in LMI regions [J].
Chilali, M ;
Gahinet, P ;
Apkarian, P .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1999, 44 (12) :2257-2270
[5]   H infinity design with pole placement constraints: An LMI approach [J].
Chilali, M ;
Gahinet, P .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1996, 41 (03) :358-367
[6]  
Gahinet P., 1995, LMI Control Toolbox
[7]   STABILITY ROBUSTNESS OF INTERVAL MATRICES VIA LYAPUNOV QUADRATIC-FORMS [J].
GAROFALO, F ;
CELENTANO, G ;
GLIELMO, L .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1993, 38 (02) :281-284
[8]  
Guo SX, 2005, 2005 INTERNATIONAL CONFERENCE ON CONTROL AND AUTOMATION (ICCA), VOLS 1 AND 2, P789
[9]  
Hu SQ, 2000, IEEE T AUTOMAT CONTR, V45, P2106, DOI 10.1109/9.887635
[10]   Efficient LMI-Based Quadratic Stabilization of Interval LPV Systems With Noisy Parameter Measures [J].
Jetto, Leopoldo ;
Orsini, Valentina .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2010, 55 (04) :993-998