Experimental compressive phase space tomography

被引:39
作者
Tian, Lei [1 ]
Lee, Justin [2 ]
Oh, Se Baek [1 ]
Barbastathis, George [1 ,3 ]
机构
[1] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
[2] MIT, Dept Hlth Sci & Technol, Cambridge, MA 02139 USA
[3] Singapore MIT Alliance Res & Technol SMART Ctr, Singapore 117543, Singapore
来源
OPTICS EXPRESS | 2012年 / 20卷 / 08期
基金
美国国家卫生研究院; 新加坡国家研究基金会;
关键词
WIGNER DISTRIBUTION FUNCTION; AMBIGUITY FUNCTION; COHERENCE; RECONSTRUCTION; MATRIX; LIGHT;
D O I
10.1364/OE.20.008296
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Phase space tomography estimates correlation functions entirely from snapshots in the evolution of the wave function along a time or space variable. In contrast, traditional interferometric methods require measurement of multiple two-point correlations. However, as in every tomographic formulation, undersampling poses a severe limitation. Here we present the first, to our knowledge, experimental demonstration of compressive reconstruction of the classical optical correlation function, i.e. the mutual intensity function. Our compressive algorithm makes explicit use of the physically justifiable assumption of a low-entropy source (or state.) Since the source was directly accessible in our classical experiment, we were able to compare the compressive estimate of the mutual intensity to an independent ground-truth estimate from the van Cittert-Zernike theorem and verify substantial quantitative improvements in the reconstruction. (C) 2012 Optical Society of America
引用
收藏
页码:8296 / 8308
页数:13
相关论文
共 36 条
[1]  
[Anonymous], ARXIV09033131
[2]  
[Anonymous], 2011, ARXIV11090573
[3]   NEW CLASS OF UNCERTAINTY RELATIONS FOR PARTIALLY COHERENT-LIGHT [J].
BASTIAANS, MJ .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1984, 1 (07) :711-715
[4]   APPLICATION OF THE WIGNER DISTRIBUTION FUNCTION TO PARTIALLY COHERENT-LIGHT [J].
BASTIAANS, MJ .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1986, 3 (08) :1227-1238
[5]   WIGNER DISTRIBUTION FUNCTION APPLIED TO OPTICAL SIGNALS AND SYSTEMS [J].
BASTIAANS, MJ .
OPTICS COMMUNICATIONS, 1978, 25 (01) :26-30
[6]  
BECK M, 1993, OPT LETT, V18, P2041, DOI 10.1364/OL.18.002041
[7]  
Blum K., 1981, Density Matrix Theory and Applications
[8]   AMBIGUITY FUNCTION AND WIGNER DISTRIBUTION FUNCTION APPLIED TO PARTIALLY COHERENT IMAGERY [J].
BRENNER, KH ;
OJEDACASTANEDA, J .
OPTICA ACTA, 1984, 31 (02) :213-223
[9]   THE AMBIGUITY FUNCTION AS A POLAR DISPLAY OF THE OTF [J].
BRENNER, KH ;
LOHMANN, AW ;
OJEDACASTANEDA, J .
OPTICS COMMUNICATIONS, 1983, 44 (05) :323-326
[10]  
Cai Jian-Feng, 2008, ARXIV08103286