REFINED YOUNG INEQUALITY WITH KANTOROVICH CONSTANT

被引:92
作者
Zuo, Hongliang [1 ]
Shi, Guanghua [2 ]
Fujii, Masatoshi [3 ]
机构
[1] Henan Normal Univ, Coll Math & Informat Sci, Xinxiang 453007, Henan, Peoples R China
[2] Henan Normal Univ, Coll Math & Informat Sci, Xinxiang 453007, Henan, Peoples R China
[3] Osaka Kyoiku Univ, Dept Math, Osaka 5828582, Japan
来源
JOURNAL OF MATHEMATICAL INEQUALITIES | 2011年 / 5卷 / 04期
关键词
Young inequality; Kantorovich constant; Specht ratio; operator inequality; operator means; arithmetic-geometric-harmonic mean inequality;
D O I
10.7153/jmi-05-47
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Specht ratio S(h) is the optimal constant in the reverse of the arithmetic-geometric mean inequality, i.e., if 0 < m <= a, b <= M and h = M/m, then (1 - mu)a + mu b <= S(h)a(1-mu) b(mu) for all mu is an element of [0, 1]. Recently S. Furuichi proved that (1 - mu)a + mu b >= S(h(r))a(1-mu) b(mu) for a, b > 0, mu is an element of [0, 1], where h = b/a and r = min{mu, 1 - mu}. In this paper, we improve it by virtue of the Kantorovich constant, utilizing the refined scalar Young inequality we establish a weighted arithmetic-geometric-harmonic mean inequality for two positive operators. In the remainder of this work we focus on extending the refined weighted arithmetic-harmonic mean inequality to an operator version for another type of improvement.
引用
收藏
页码:551 / 556
页数:6
相关论文
共 10 条
[1]  
Baric J, 2009, MATH INEQUAL APPL, V12, P413
[2]  
FURUICHI S., ARXIV10040581V2
[3]   ON REFINED YOUNG INEQUALITIES AND REVERSE INEQUALITIES [J].
Furuichi, Shigeru .
JOURNAL OF MATHEMATICAL INEQUALITIES, 2011, 5 (01) :21-31
[4]   The Holder-McCarthy and the young inequalities are equivalent for Hilbert space operators [J].
Furuta, T .
AMERICAN MATHEMATICAL MONTHLY, 2001, 108 (01) :68-69
[5]   Improved Young and Heinz inequalities for matrices [J].
Kittaneh, Fuad ;
Manasrah, Yousef .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 361 (01) :262-269
[6]   MEANS OF POSITIVE LINEAR-OPERATORS [J].
KUBO, F ;
ANDO, T .
MATHEMATISCHE ANNALEN, 1980, 246 (03) :205-224
[7]  
Pecaric J. E., 1993, Classical and New Inequalities in Analysis
[8]   ON A NEW CONVERSE OF JENSEN'S INEQUALITY [J].
Simic, Slavko .
PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2009, 85 (99) :107-110
[9]  
SPECHT W., 1960, Math. Z, V74, P91
[10]  
TOMINAGA M., 2002, Sci. Math. Jpn., V55, P583