Yolk-shell Si/SiOx@Void@C composites as anode materials for lithium-ion batteries

被引:29
作者
Lu, Yue [1 ,2 ]
Chang, Peng [1 ]
Wang, Libin [1 ]
Nzabahimana, Joseph [1 ]
Hu, Xianluo [1 ]
机构
[1] Huazhong Univ Sci & Technol, State Key Lab Mat Proc & Die & Mould Technol, Sch Mat Sci & Engn, Wuhan 430074, Hubei, Peoples R China
[2] Huazhong Univ Sci & Technol, China EU Inst Clean & Renewable Energy, Wuhan 430074, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
Silicon anodes; yolk-shell structure; Si/C composites; lithium-ion battery; PRACTICAL APPLICATION; CARBON SHELL; LI; PERFORMANCE; SILICON; STORAGE; NANOCOMPOSITE; BINDERS; DESIGN; ARRAYS;
D O I
10.1142/S1793604718500947
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Silicon (Si) has been considered as one of the most promising anode materials in lithium-ion battery. However, practical applications of Si are hindered by undesirable cycling stability resulting from poor electrical conductivity and huge volumetric change during cycling process. Here, we prepared a yolk-shell silicon/carbon composite by etching carbon-coated heat-treated silicon monoxide (SiO) precursor. The as-prepared Si/SiOx@Void@C composite of inner silicon/silicon oxides and outer carbon shell with voids between them (Si/SiOx @Void @C), shows impressive cycling stability (1020 mAh g(-1) at 1 A g(-1 )over 200 cycles) and excellent rate performance (775 mAh g(-1) at 6 A g(-1) ). The remarkable electrochemical performance is due to the enhanced electrical conductivity originated from the carbon shell and the volume buffer effect of the yolk-shell structure. A combination of the yolk-shell structure with Si/C composites is believed to be a promising way to improve the performance of Si-based materials in lithium-ion batteries.
引用
收藏
页数:6
相关论文
共 50 条
[31]   Characterizations and electrochemical behaviors of disproportionated SiO and its composite for rechargeable Li-ion batteries [J].
Park, Cheol-Min ;
Choi, Woongchul ;
Hwa, Yoon ;
Kim, Jae-Hun ;
Jeong, Goojin ;
Sohn, Hun-Joon .
JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (23) :4854-4860
[32]   Silicon nanowires for rechargeable lithium-ion battery anodes [J].
Peng, Kuiqing ;
Jie, Jiansheng ;
Zhang, Wenjun ;
Lee, Shuit-Tong .
APPLIED PHYSICS LETTERS, 2008, 93 (03)
[33]   Synthesis of Ultrathin Si Nanosheets from Natural Clays for Lithium-Ion Battery Anodes [J].
Ryu, Jaegeon ;
Hong, Dongki ;
Choi, Sinho ;
Park, Soojin .
ACS NANO, 2016, 10 (02) :2843-2851
[34]   A MECHANISM OF LITHIUM STORAGE IN DISORDERED CARBONS [J].
SATO, K ;
NOGUCHI, M ;
DEMACHI, A ;
OKI, N ;
ENDO, M .
SCIENCE, 1994, 264 (5158) :556-558
[35]   Critical Thickness of SiO2 Coating Layer on Core@Shell Bulk@Nanowire Si Anode Materials for Li-Ion Batteries [J].
Sim, Soojin ;
Oh, Pilgun ;
Park, Soojin ;
Cho, Jaephil .
ADVANCED MATERIALS, 2013, 25 (32) :4498-4503
[36]   High performance amorphous-Si@SiOx/C composite anode materials for Li-ion batteries derived from ball-milling and in situ carbonization [J].
Wang, Dingsheng ;
Gao, Mingxia ;
Pan, Hongge ;
Wang, Junhua ;
Liu, Yongfeng .
JOURNAL OF POWER SOURCES, 2014, 256 :190-199
[37]   One-step electrolytic preparation of Si-Fe alloys as anodes for lithium ion batteries [J].
Wang, Hailong ;
Sun, Diankun ;
Song, Qiqi ;
Xie, Wenqi ;
Jiang, Xu ;
Zhang, Bo .
FUNCTIONAL MATERIALS LETTERS, 2016, 9 (03)
[38]  
Wu H, 2012, NAT NANOTECHNOL, V7, P309, DOI [10.1038/nnano.2012.35, 10.1038/NNANO.2012.35]
[39]   Encapsulating silicon nanoparticles into N-doped carbon film as a high-performance anode for lithium ion batteries [J].
Xing, Zheng ;
Huang, Chunlai ;
Deng, Yichen ;
Zhao, Yulong ;
Ju, Zhicheng .
FUNCTIONAL MATERIALS LETTERS, 2018, 11 (04)
[40]   Controllable synthesis of N-C@LiFePO4 nanospheres as advanced cathode of lithium ion batteries [J].
Xiong, Q. Q. ;
Lou, J. J. ;
Teng, X. J. ;
Lu, X. X. ;
Liu, S. Y. ;
Chi, H. Z. ;
Ji, Z. G. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2018, 743 :377-382