Periodic descriptor systems: Solvability and conditionability

被引:26
作者
Sreedhar, J
Van Dooren, P
机构
[1] Univ Illinois, Dept Elect & Comp Engn, Urbana, IL 61801 USA
[2] Univ Illinois, Coordinated Sci Lab, Urbana, IL 61801 USA
[3] Univ Catholique Louvain, Dept Engn Math, B-1348 Louvain, Belgium
基金
美国国家科学基金会;
关键词
descriptor systems; periodic systems;
D O I
10.1109/9.746256
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The authors consider discrete-time linear periodic descriptor systems and study the concepts of solvability and conditionability, introduced by Luenberger. They prove that solvability is equivalent to conditionability, just as in the time-invariant case. We give a characterization of solvability/conditionability in terms of a cyclic matrix: pencil and, furthermore, propose a simple test,ia the periodic Schur decomposition to check for either property. This could lead to further systematic study of these systems.
引用
收藏
页码:310 / 313
页数:4
相关论文
共 9 条
[1]  
BITTANTI S, 1986, TIME SERIES LINEAR S, P141
[2]  
BOJANCZYK A, 1992, P SOC PHOTO-OPT INS, V1770, P31, DOI 10.1117/12.130915
[3]  
Gantmacher F. R., 1959, THEORY MATRICES, V2
[4]  
Gantmacher F R, 1959, THEORY MATRICES, VI
[5]   NUMERICAL-SOLUTION OF THE DISCRETE-TIME PERIODIC RICCATI EQUATION [J].
HENCH, JJ ;
LAUB, AJ .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1994, 39 (06) :1197-1210
[6]   DYNAMIC EQUATIONS IN DESCRIPTOR FORM [J].
LUENBERGER, DG .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1977, 22 (03) :312-322
[7]   TIME-INVARIANT DESCRIPTOR SYSTEMS [J].
LUENBERGER, DG .
AUTOMATICA, 1978, 14 (05) :473-480
[8]   ALGORITHM FOR GENERALIZED MATRIX EIGENVALUE PROBLEMS [J].
MOLER, CB ;
STEWART, GW .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1973, 10 (02) :241-256
[9]  
SREEDHAR J, 1997, P EUR CONTR C BRUSS, V6, pB