Cortical cell stiffness is independent of substrate mechanics

被引:97
作者
Rheinlaender, Johannes [1 ,7 ]
Dimitracopoulos, Andrea [1 ]
Wallmeyer, Bernhard [2 ]
Kronenberg, Nils M. [3 ,8 ]
Chalut, Kevin J. [4 ]
Gather, Malte C. [3 ,8 ]
Betz, Timo [2 ]
Charras, Guillaume [5 ,6 ]
Franze, Kristian [1 ]
机构
[1] Univ Cambridge, Dept Physiol Dev & Neurosci, Cambridge, England
[2] Univ Munster, Inst Cell Biol Excellence Cluster Cells Mot, Ctr Mol Biol Inflammat, Munster, Germany
[3] Univ St Andrews, Sch Phys & Astron, SUPA, St Andrews, Fife, Scotland
[4] Univ Cambridge, Wellcome Trust Med Res Council Cambridge Stem Cel, Cambridge, England
[5] UCL, London Ctr Nanotechnol, London, England
[6] UCL, Dept Cell & Dev Biol, London, England
[7] Univ Tubingen, Inst Appl Phys, Tubingen, Germany
[8] Univ Cologne, Ctr Nanobiophoton, Dept Chem, Cologne, Germany
基金
英国工程与自然科学研究理事会; 英国医学研究理事会; 欧洲研究理事会; 英国生物技术与生命科学研究理事会;
关键词
ATOMIC-FORCE MICROSCOPY; ELASTIC-MODULI; SOFT; PRECISION; MIGRATION;
D O I
10.1038/s41563-020-0684-x
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Atomic force microscopy indentation measurements of cells cultured on soft substrates may result in an underestimation of cell stiffness. A model has now been developed that takes this soft substrate effect into account, revealing that cortical cell stiffness is largely independent of substrate mechanics. Cortical stiffness is an important cellular property that changes during migration, adhesion and growth. Previous atomic force microscopy (AFM) indentation measurements of cells cultured on deformable substrates have suggested that cells adapt their stiffness to that of their surroundings. Here we show that the force applied by AFM to a cell results in a significant deformation of the underlying substrate if this substrate is softer than the cell. This 'soft substrate effect' leads to an underestimation of a cell's elastic modulus when analysing data using a standard Hertz model, as confirmed by finite element modelling and AFM measurements of calibrated polyacrylamide beads, microglial cells and fibroblasts. To account for this substrate deformation, we developed a 'composite cell-substrate model'. Correcting for the substrate indentation revealed that cortical cell stiffness is largely independent of substrate mechanics, which has major implications for our interpretation of many physiological and pathological processes.
引用
收藏
页码:1019 / +
页数:9
相关论文
共 50 条
[1]   Tissue stiffening coordinates morphogenesis by triggering collective cell migration in vivo [J].
Barriga, Elias H. ;
Franze, Kristian ;
Charras, Guillaume ;
Mayor, Roberto .
NATURE, 2018, 554 (7693) :523-+
[2]   REGULAR PYRAMID PUNCH PROBLEM [J].
BILODEAU, GG .
JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1992, 59 (03) :519-523
[3]   Microglia mechanics: immune activation alters traction forces and durotaxis [J].
Bollmann, Lars ;
Koser, David E. ;
Shahapure, Rajesh ;
Gautier, Helene O. B. ;
Holzapfel, Gerhard A. ;
Scarcelli, Giuliano ;
Gather, Malte C. ;
Ulbricht, Elke ;
Franze, Kristian .
FRONTIERS IN CELLULAR NEUROSCIENCE, 2015, 9 :1-16
[4]  
Boudou T, 2006, BIORHEOLOGY, V43, P721
[5]  
Boussinesq J., 1885, Application des potentiels a l'etude de l'equilibre et du mouvement des solides elastiques
[6]   Atomic force microscopy can be used to mechanically stimulate osteoblasts and evaluate cellular strain distributions [J].
Charras, GT ;
Lehenkari, PP ;
Horton, MA .
ULTRAMICROSCOPY, 2001, 86 (1-2) :85-95
[7]   Control of cell morphology and differentiation by substrates with independently tunable elasticity and viscous dissipation [J].
Charrier, Elisabeth E. ;
Pogoda, Katarzyna ;
Wells, Rebecca G. ;
Janmey, Paul A. .
NATURE COMMUNICATIONS, 2018, 9
[8]   Geometric control of cell life and death [J].
Chen, CS ;
Mrksich, M ;
Huang, S ;
Whitesides, GM ;
Ingber, DE .
SCIENCE, 1997, 276 (5317) :1425-1428
[9]   Cardiac myocyte remodeling mediated by N-cadherin-dependent mechanosensing [J].
Chopra, Anant ;
Tabdanov, Erdem ;
Patel, Hersh ;
Janmey, Paul A. ;
Kresh, J. Yasha .
AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 2011, 300 (04) :H1252-H1266
[10]   Rho-stimulated contractility drives the formation of stress fibers and focal adhesions [J].
ChrzanowskaWodnicka, M ;
Burridge, K .
JOURNAL OF CELL BIOLOGY, 1996, 133 (06) :1403-1415