A Multitask Learning Framework for Multimodal Sentiment Analysis

被引:18
作者
Jiang, Dazhi [1 ]
Wei, Runguo [1 ]
Liu, Hao [1 ]
Wen, Jintao [1 ]
Tu, Geng [1 ]
Zheng, Lin [1 ]
Cambria, Erik [2 ]
机构
[1] Shantou Univ, Dept Comp Sci, Shantou, Peoples R China
[2] Nanyang Technol Univ, Sch Comp Sci & Engn, Singapore, Singapore
来源
21ST IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS ICDMW 2021 | 2021年
基金
中国国家自然科学基金;
关键词
Multimodal sentiment analysis; Multitask learning;
D O I
10.1109/ICDMW53433.2021.00025
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Mapping continuous dimensional emotion to discrete classes is an extremely difficult task. In this paper, we predict the intensity classes of emotions based on valence and arousal in segments of audio-visual recordings about car reviews. Consequently, for unimodal features, we first employ baseline methods and principal component analysis to search for the best unimodal features in different modalities, which can simplify the relationship between feature attributes. For multimodal features, we perform multimodal fusion on the best and other unimodal features through an early fusion strategy. For sentiment analysis, we propose six hybrid temporal models for modeling complex time dependencies. To avoid overfitting the validation set and providing complementary information between different modalities, we propose a multitask learning framework, which can adaptively change the weight of loss per subtask.
引用
收藏
页码:151 / 157
页数:7
相关论文
共 34 条
[1]   All-in-One: Emotion, Sentiment and Intensity Prediction Using a Multi-Task Ensemble Framework [J].
Akhtar, Md Shad ;
Ghosal, Deepanway ;
Ekbal, Asif ;
Bhattacharyya, Pushpak ;
Kurohashi, Sadao .
IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, 2022, 13 (01) :285-297
[2]   SenticNet 6: Ensemble Application of Symbolic and Subsymbolic AI for Sentiment Analysis [J].
Cambria, Erik ;
Li, Yang ;
Xing, Frank Z. ;
Poria, Soujanya ;
Kwok, Kenneth .
CIKM '20: PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, 2020, :105-114
[3]   Fuzzy commonsense reasoning for multimodal sentiment analysis [J].
Chaturvedi, Iti ;
Satapathy, Ranjan ;
Cavallari, Sandro ;
Cambria, Erik .
PATTERN RECOGNITION LETTERS, 2019, 125 :264-270
[4]  
Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
[5]  
Devlin J, 2019, 2019 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL HLT 2019), VOL. 1, P4171
[6]  
Ekman P, 1997, NONVERBAL COMMUNICAT, P27, DOI DOI 10.4324/9781351243131-3
[7]   The Geneva Minimalistic Acoustic Parameter Set (GeMAPS) for Voice Research and Affective Computing [J].
Eyben, Florian ;
Scherer, Klaus R. ;
Schuller, Bjoern W. ;
Sundberg, Johan ;
Andre, Elisabeth ;
Busso, Carlos ;
Devillers, Laurence Y. ;
Epps, Julien ;
Laukka, Petri ;
Narayanan, Shrikanth S. ;
Truong, Khiet P. .
IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, 2016, 7 (02) :190-202
[8]  
Gemmeke JF, 2017, INT CONF ACOUST SPEE, P776, DOI 10.1109/ICASSP.2017.7952261
[9]   Affective video content representation and modeling [J].
Hanjalic, A ;
Xu, LQ .
IEEE TRANSACTIONS ON MULTIMEDIA, 2005, 7 (01) :143-154
[10]   MISA: Modality-Invariant and -Specific Representations for Multimodal Sentiment Analysis [J].
Hazarika, Devamanyu ;
Zimmermann, Roger ;
Poria, Soujanya .
MM '20: PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, 2020, :1122-1131