Discrete Choquet integral and some of its symmetric extensions

被引:22
作者
Mesiar, R. [2 ,3 ]
Mesiarova-Zemankova, A. [1 ,4 ]
Ahmad, K. [1 ]
机构
[1] Trinity Coll Dublin, Dept Comp Sci, Dublin, Ireland
[2] Slovak Univ Technol Bratislava, Bratislava, Slovakia
[3] Univ Ostrava, IRAFM, Ostrava, Czech Republic
[4] Math Inst SAS, Bratislava, Slovakia
关键词
Capacity; Choquet integral; Fusion Choquet integral; Balancing Choquet integral; OWA operator; Sipos integral; Symmetric maximum;
D O I
10.1016/j.fss.2010.11.013
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Classical extensions of the Choquet integral (defined on [0,1]) to [-1,1] are the asymmetric and the symmetric Choquet integral, the second one being called also the Sipo integral. Recently, the balancing Choquet integral was introduced as another kind of a symmetric extension of the discrete Choquet integral. We introduce and discuss a new type of such extension, the fusion Choquet integral, and discuss its properties and relationship to the balancing and the symmetric Choquet integral. The symmetric maximum introduced by Grabisch is shown to be a special case of the fusion and the balancing Choquet integral. Several extensions of OWA operators are also discussed. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:148 / 155
页数:8
相关论文
共 13 条
[1]  
Ahmad K., FUZZY POLARITY UNPUB
[2]  
[Anonymous], 2009, IFSR INT SERIES SYST
[3]  
Choquet G., 1954, Ann. Institute. Fourier (Grenoble), V5, P131, DOI DOI 10.5802/AIF.53
[4]  
Denneberg D., 1994, NONADDITIVE MEASURE
[5]   The Mobius transform on symmetric ordered structures and its application to capacities on finite sets [J].
Grabisch, M .
DISCRETE MATHEMATICS, 2004, 287 (1-3) :17-34
[6]   The symmetric Sugeno integral [J].
Grabisch, M .
FUZZY SETS AND SYSTEMS, 2003, 139 (03) :473-490
[7]   FUZZY INTEGRAL IN MULTICRITERIA DECISION-MAKING [J].
GRABISCH, M .
FUZZY SETS AND SYSTEMS, 1995, 69 (03) :279-298
[8]  
Grabisch M., 2009, AGGREGATIONS FUNCTIO
[9]   The balancing Choquet integral [J].
Mesiarova-Zemankova, A. ;
Mesiar, R. ;
Ahmad, K. .
FUZZY SETS AND SYSTEMS, 2010, 161 (17) :2243-2255
[10]   SOME QUANTITIES REPRESENTED BY THE CHOQUET INTEGRAL [J].
MUROFUSHI, T ;
SUGENO, M .
FUZZY SETS AND SYSTEMS, 1993, 56 (02) :229-235