Novel chemiluminometric H2O2 sensors for the selective flow injection analysis

被引:16
|
作者
Janasek, D
Spohn, U
Beckmann, D
机构
[1] Univ Halle Wittenberg, Inst Biotechnol, D-06120 Halle, Germany
[2] Inst Bioproc & Analyt Measurement Tech Heiligenst, D-37308 Heiligenstadt, Germany
关键词
chemiluminescence sensor; gas dialysis; hydrogen peroxide;
D O I
10.1016/S0925-4005(98)00177-4
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Hydrogen peroxide can be detected chemiluminometrically in the presence of luminol at cobalt and copper foils. The chemiluminescence signal can also be induced electrochemically. The linear determination ranges are 0.1-200 mu M on cobalt and 5-2000 mu M on copper under flow injection conditions. To improve the selectivity the chemiluminescence detector was combined with a thin layer gas dialysis cell. Hydrogen peroxide was detected in the range between 0.5 and 100 mM. The interference by a more than 100-fold excess of EDTA, alpha-ketocarboxylic acids and peroxodisulfate can be excluded. Peroxomonosulfate concentrations greater than a ten-fold excess of hydrogen peroxide cause a significant bias, which resulted from the hydrolysis of peroxomonosulfate. (C) 1998 Elsevier Science S.A. All rights reserved.
引用
收藏
页码:107 / 113
页数:7
相关论文
共 50 条
  • [31] Fluorescent gold nanoclusters based photoelectrochemical sensors for detection of H2O2 and glucose
    Zhang, Jianxiu
    Tu, Liping
    Zhao, Shuang
    Liu, Guohua
    Wang, Yangyun
    Wang, Yong
    Yue, Zhao
    BIOSENSORS & BIOELECTRONICS, 2015, 67 : 296 - 302
  • [32] Characterisation of polymeric materials as passivation layer for calorimetric H2O2 gas sensors
    Kirchner, Patrick
    Reisert, Steffen
    Puetz, Patrick
    Keusgen, Michael
    Schoening, Michael J.
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2012, 209 (05): : 859 - 863
  • [33] Responsive mechanism of a newly synthesized fluorescent probe for sensing H2O2, NO and H2O2/NO
    Zhang, Yu-Jin
    Wang, Xin
    Zhou, Yong
    Zhao, Ke
    Wang, Chuan-Kui
    CHEMICAL PHYSICS LETTERS, 2016, 662 : 107 - 113
  • [34] Bromination of alkenols with the H2O2—LiBr—CeIII and H2O2—LiBr—CeIV systems
    G. I. Nikishin
    L. L. Sokova
    N. I. Kapustina
    Russian Chemical Bulletin, 2012, 61 : 459 - 463
  • [35] Heterotopic formaldehyde biodegradation through UV/H2O2 system with biosynthetic H2O2
    Zhao, Qian
    An, Jingkun
    Wang, Shu
    Wang, Cong
    Liu, Jia
    Li, Nan
    WATER ENVIRONMENT RESEARCH, 2019, 91 (07) : 598 - 605
  • [36] Selective oxidation of thiourea with H2O2 catalyzed by [RuIII(edta)(H2O)]-: kinetic and mechanistic studies
    Chatterjee, Debabrata
    Rothbart, Sabine
    van Eldik, Rudi
    DALTON TRANSACTIONS, 2013, 42 (13) : 4725 - 4729
  • [37] Investigation of MXenes as oxygen reduction electrocatalyst for selective H2O2 generation
    Huang, Xiao
    Song, Min
    Zhang, Jian
    Zhang, Jingjing
    Liu, Wei
    Zhang, Chang
    Zhang, Wang
    Wang, Deli
    NANO RESEARCH, 2022, 15 (05) : 3927 - 3932
  • [38] Towards selective catalytic oxidations using in situ generated H2O2
    O'Callaghan, Niamh
    Sullivan, James A.
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2014, 146 : 258 - 266
  • [39] Perovskite-based electrochemiluminescence analysis of H2O2
    Jia, Ziyi
    Zhang, Hui
    Chen, Yuxin
    Fang, Yuan
    Zhang, Junnan
    Hu, Shanwen
    RSC ADVANCES, 2024, 14 (28) : 19744 - 19751
  • [40] H2O2: A Dynamic Neuromodulator
    Rice, Margaret E.
    NEUROSCIENTIST, 2011, 17 (04) : 389 - 406