首页
学术期刊
论文检测
AIGC检测
热点
更多
数据
Stochastic Particle Approximations for the Ricci Flow on Surfaces and the Yamabe Flow
被引:1
|
作者
:
Philipowski, Robert
论文数:
0
引用数:
0
h-index:
0
机构:
Univ Bonn, Inst Angew Math, D-53115 Bonn, Germany
Univ Bonn, Inst Angew Math, D-53115 Bonn, Germany
Philipowski, Robert
[
1
]
机构
:
[1]
Univ Bonn, Inst Angew Math, D-53115 Bonn, Germany
来源
:
POTENTIAL ANALYSIS
|
2011年
/ 35卷
/ 04期
关键词
:
Ricci flow on surfaces;
Yamabe flow;
Stochastic interacting particle system;
POROUS-MEDIUM EQUATION;
CONVERGENCE;
D O I
:
10.1007/s11118-010-9216-7
中图分类号
:
O1 [数学];
学科分类号
:
0701 ;
070101 ;
摘要
:
We present stochastic particle approximations for the normalized Ricci flow on surfaces and for the non-normalized Yamabe flow on manifolds of arbitrary dimension.
引用
收藏
页码:353 / 371
页数:19
相关论文
共 50 条
[31]
CONVERGENCE OF THE YAMABE FLOW ON SINGULAR SPACES WITH POSITIVE YAMABE CONSTANT
论文数:
引用数:
h-index:
机构:
Carron, Gilles
论文数:
引用数:
h-index:
机构:
Lye, Jorgen Olsen
论文数:
引用数:
h-index:
机构:
Vertman, Boris
TOHOKU MATHEMATICAL JOURNAL,
2023,
75
(04)
: 561
-
615
[32]
CR Yamabe constant, CR Yamabe flow and its soliton
Ho, Pak Tung
论文数:
0
引用数:
0
h-index:
0
机构:
Sogang Univ, Dept Math, Seoul 04107, South Korea
Sogang Univ, Dept Math, Seoul 04107, South Korea
Ho, Pak Tung
Wang, Kunbo
论文数:
0
引用数:
0
h-index:
0
机构:
China Jiliang Univ, Coll Sci, Hangzhou 310018, Peoples R China
Sogang Univ, Dept Math, Seoul 04107, South Korea
Wang, Kunbo
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS,
2020,
199
[33]
Yamabe Flow and Myers Type Theorem on Complete Manifolds
Ma, Li
论文数:
0
引用数:
0
h-index:
0
机构:
Henan Normal Univ, Dept Math, Xinxiang 453007, Peoples R China
Henan Normal Univ, Dept Math, Xinxiang 453007, Peoples R China
Ma, Li
Cheng, Liang
论文数:
0
引用数:
0
h-index:
0
机构:
Huazhong Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R China
Henan Normal Univ, Dept Math, Xinxiang 453007, Peoples R China
Cheng, Liang
JOURNAL OF GEOMETRIC ANALYSIS,
2014,
24
(01)
: 246
-
270
[34]
First eigenvalues of geometric operators under the Yamabe flow
Ho, Pak Tung
论文数:
0
引用数:
0
h-index:
0
机构:
Sogang Univ, Dept Math, Seoul 121742, South Korea
Sogang Univ, Dept Math, Seoul 121742, South Korea
Ho, Pak Tung
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY,
2018,
54
(04)
: 449
-
472
[35]
Long-time existence of the edge Yamabe flow
论文数:
引用数:
h-index:
机构:
Bahuaud, Eric
论文数:
引用数:
h-index:
机构:
Vertman, Boris
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN,
2019,
71
(02)
: 651
-
688
[36]
Yamabe flow: Steady solitons and Type II singularities
Choi, Beomjun
论文数:
0
引用数:
0
h-index:
0
机构:
Columbia Univ, Dept Math, 2990 Broadway, New York, NY 10027 USA
Columbia Univ, Dept Math, 2990 Broadway, New York, NY 10027 USA
Choi, Beomjun
Daskalopoulos, Panagiota
论文数:
0
引用数:
0
h-index:
0
机构:
Columbia Univ, Dept Math, 2990 Broadway, New York, NY 10027 USA
Columbia Univ, Dept Math, 2990 Broadway, New York, NY 10027 USA
Daskalopoulos, Panagiota
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS,
2018,
173
: 1
-
18
[37]
The contact Yamabe flow on K-contact manifolds
Zhang YongBing
论文数:
0
引用数:
0
h-index:
0
机构:
Univ Sci & Technol China, Dept Math, Hefei 230026, Peoples R China
Univ Sci & Technol China, Dept Math, Hefei 230026, Peoples R China
Zhang YongBing
SCIENCE IN CHINA SERIES A-MATHEMATICS,
2009,
52
(08):
: 1723
-
1732
[38]
Conic manifolds under the Yamabe flow
Roidos, Nikolaos
论文数:
0
引用数:
0
h-index:
0
机构:
Univ Patras, Dept Math, Rion 26504, Greece
Univ Patras, Dept Math, Rion 26504, Greece
Roidos, Nikolaos
JOURNAL OF EVOLUTION EQUATIONS,
2020,
20
(02)
: 321
-
334
[39]
A maximum principle for combinatorial Yamabe flow
论文数:
引用数:
h-index:
机构:
Glickenstein, D
TOPOLOGY,
2005,
44
(04)
: 809
-
825
[40]
Yamabe Flow On Nilpotent Lie Groups
论文数:
引用数:
h-index:
机构:
Azami, Shahroud
BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY,
2020,
46
(04)
: 1123
-
1142
←
1
2
3
4
5
→