The asymptotic behavior of the solutions of the Cauchy problem generated by φ-accretive operators

被引:18
作者
García-Falset, J [1 ]
机构
[1] Univ Valencia, Dept Anal Matemat, Valencia 46100, Spain
关键词
accretive operator; asymptotic behavior; nonexpansive semigroup; stationary point;
D O I
10.1016/j.jmaa.2005.02.027
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of this paper is to study the asymptotic behavior of the solutions of certain type of differential inclusions posed in Banach spaces. In particular, we obtain the abstract result on the asymptotic behavior of the solution of the boundary value problem (Graphics) where Omega is a bounded open domain in R-n with smooth boundary partial derivative Omega, f (t, x) is a given L-1 -function on]0, infinity[ x Omega, gamma >= 1 and 1 <= p < infinity. Delta(p) represents the p-Laplacian operator, partial derivative/partial derivative eta is the associated Neumann boundary operator and beta a maximal monotone graph in R x R with 0 is an element of beta(0). (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:594 / 608
页数:15
相关论文
共 22 条
[1]  
ANDREU F, IN PRESS ASYMPTOT AN
[2]  
ANDREU F, 1997, ADV MATH SCI APPL, V7, P183
[3]  
ANDREU F, 1995, NODEA-NONLINEAR DIFF, V2, P267
[4]  
[Anonymous], NONLINEAR ANAL
[5]  
Barbu V., 1976, NONLINEAR SEMIGROUPS
[6]  
BENILAN P, 1991, LECT NOTES PURE APPL, V135
[7]  
BENILAN P, UNPUB EVOLUTION EQUA
[8]  
BREZIS H., 1973, North-Holland Math. Stud., V5
[9]  
BREZIS H, 1971, CONTRIBUTIONS NONLIN, P101
[10]   NONLINEAR ACCRETIVE OPERATORS IN BANACH SPACES [J].
BROWDER, FE .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1967, 73 (03) :470-&