Conservation law for distributed entanglement of formation and quantum discord

被引:154
作者
Fanchini, Felipe F. [1 ]
Cornelio, Marcio F. [2 ]
de Oliveira, Marcos C. [2 ]
Caldeira, Amir O. [2 ]
机构
[1] Univ Fed Ouro Preto, Dept Fis, BR-35400000 Ouro Preto, Minas Gerais, Brazil
[2] Univ Estadual Campinas, Inst Fis Gleb Wataghin, BR-13083970 Campinas, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
D O I
10.1103/PhysRevA.84.012313
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We present a direct relation, based upon a monogamic principle, between entanglement of formation (EOF) and quantum discord (QD), showing how they are distributed in an arbitrary tripartite pure system. By extending it to a paradigmatic situation of a bipartite system coupled to an environment, we demonstrate that the EOF and the QD obey conservation relation. By means of this relation we show that in the deterministic quantum computer with one pure qubit the protocol has the ability to rearrange the EOF and the QD, which implies that quantum computation can be understood on a different basis as a coherent dynamics where quantum correlations are distributed between the qubits of the computer. Furthermore, for a tripartite mixed state we show that the balance between distributed EOF and QD results in a stronger version of the strong subadditivity of entropy.
引用
收藏
页数:4
相关论文
共 18 条
[1]  
[Anonymous], PHYS REV A
[2]  
Chuang I. N., 2000, Quantum Computation and Quantum Information
[3]   Entanglement Irreversibility from Quantum Discord and Quantum Deficit [J].
Cornelio, Marcio F. ;
de Oliveira, Marcos C. ;
Fanchini, Felipe F. .
PHYSICAL REVIEW LETTERS, 2011, 107 (01)
[4]   Quantum discord and the power of one qubit [J].
Datta, Animesh ;
Shaji, Anil ;
Caves, Carlton M. .
PHYSICAL REVIEW LETTERS, 2008, 100 (05)
[5]   Classical, quantum and total correlations [J].
Henderson, L ;
Vedral, V .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (35) :6899-6905
[6]   Partial quantum information [J].
Horodecki, M ;
Oppenheim, J ;
Winter, A .
NATURE, 2005, 436 (7051) :673-676
[7]   Power of one bit of quantum information [J].
Knill, E ;
Laflamme, R .
PHYSICAL REVIEW LETTERS, 1998, 81 (25) :5672-5675
[8]   Monogamy of quantum entanglement and other correlations [J].
Koashi, M ;
Winter, A .
PHYSICAL REVIEW A, 2004, 69 (02) :6
[9]   Experimental Quantum Computing without Entanglement [J].
Lanyon, B. P. ;
Barbieri, M. ;
Almeida, M. P. ;
White, A. G. .
PHYSICAL REVIEW LETTERS, 2008, 101 (20)
[10]   PROOF OF STRONG SUBADDITIVITY OF QUANTUM-MECHANICAL ENTROPY [J].
LIEB, EH ;
RUSKAI, MB .
JOURNAL OF MATHEMATICAL PHYSICS, 1973, 14 (12) :1938-1941