Oscillatory behavior of the second order general noncanonical differential equations

被引:3
作者
Baculikova, B. [1 ]
机构
[1] Tech Univ Kosice, Fac Elect Engn & Informat, Dept Math, Letna 9, Kosice 04200, Slovakia
关键词
Second order differential equations; Delay argument; Oscillation; CRITERIA;
D O I
10.1016/j.aml.2020.106224
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce new oscillatory criteria for the second order noncanonical differential equation with delay argument r(t)(y'(t))(alpha))' + p(t)y(beta)(tau(t)) = 0. Our oscillatory results essentially extend the earlier ones. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:5
相关论文
共 11 条
[1]   Oscillation criteria for second-order retarded differential equations [J].
Agarwal, RP ;
Shieh, SL ;
Yeh, CC .
MATHEMATICAL AND COMPUTER MODELLING, 1997, 26 (04) :1-11
[2]   Oscillation criteria for second-order linear differential equations [J].
Deng, JQ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 271 (01) :283-287
[3]   COMPARISON-THEOREMS FOR FUNCTIONAL-DIFFERENTIAL EQUATIONS [J].
DZURINA, J .
MATHEMATISCHE NACHRICHTEN, 1993, 164 :13-22
[4]  
Dzurina J., 1992, MATH SLOVACA, V42, P299
[5]  
Hartman P., 1952, Amer. J. Math, V74, P389
[6]  
KIGURADZE I., 2012, Asymptotic Properties of Solutions of Nonautonomous OrdinaryDifferential Equations
[7]  
Kiguradze I.T., 1964, Math. Sb, V2, P172
[8]  
Koplatadze R., 1999, Gorgian Math. J., V6, P553
[9]  
Ladde G.S., 1987, Mathematics in Science and Engineering
[10]  
Opial Z., 1958, Ann. Polon. Math, V4, P308