Oscillatory pulses in FitzHugh-Nagumo type systems with cross-diffusion

被引:13
作者
Zemskov, E. P. [1 ,2 ]
Epstein, I. R. [1 ,2 ]
Muntean, A. [3 ]
机构
[1] Brandeis Univ, Dept Chem, Waltham, MA 02454 USA
[2] Russian Acad Sci, Ctr Comp, Moscow 119333, Russia
[3] Tech Univ Eindhoven, Dept Math & Comp Sci, Inst Complex Mol Syst, NL-5600 MB Eindhoven, Netherlands
来源
MATHEMATICAL MEDICINE AND BIOLOGY-A JOURNAL OF THE IMA | 2011年 / 28卷 / 02期
基金
俄罗斯基础研究基金会; 美国国家科学基金会;
关键词
cross-diffusion; reaction-diffusion systems; pulse solutions; pattern formation; TRAVELING-WAVE SOLUTIONS;
D O I
10.1093/imammb/dqq012
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We study FitzHugh-Nagumo type reaction-diffusion systems with linear cross-diffusion terms. Based on an analytical description using piecewise linear approximations of the reaction functions, we completely describe the occurrence and properties of wavy pulses, patterns of relevance in several biological contexts, in two prototypical systems. The pulse wave profiles arising in this treatment contain oscillatory tails similar to those in travelling fronts. We find a fundamental, intrinsic feature of pulse dynamics in cross-diffusive systems-the appearance of pulses in the bistable regime when two fixed points exist.
引用
收藏
页码:217 / 226
页数:10
相关论文
共 50 条
[42]   Spontaneous traveling waves in oscillatory systems with cross diffusion [J].
Biktashev, V. N. ;
Tsyganov, M. A. .
PHYSICAL REVIEW E, 2009, 80 (05)
[43]   On pattern formation in reaction-diffusion systems containing self- and cross-diffusion [J].
Aymard, Benjamin .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2022, 105
[44]   Global existence of solutions for quasilinear parabolic systems with the cross-diffusion effect [J].
Yang, WL ;
Zhou, HY ;
Cho, YJ .
DIFFERENTIAL EQUATIONS AND APPLICATIONS, VOL 2, 2002, :205-222
[45]   Nonlocal cross-diffusion systems for multi-species populations and networks [J].
Juengel, Ansgar ;
Portisch, Stefan ;
Zurek, Antoine .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2022, 219
[46]   Cross-Diffusion Systems for Image Processing: I. The Linear Case [J].
A. Araújo ;
S. Barbeiro ;
E. Cuesta ;
A. Durán .
Journal of Mathematical Imaging and Vision, 2017, 58 :447-467
[47]   Uniform boundedness and convergence of solutions to the systems with a single nonzero cross-diffusion [J].
Shim, SA .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 279 (01) :1-21
[48]   Cross-Diffusion Systems for Image Processing: II. The Nonlinear Case [J].
A. Araújo ;
S. Barbeiro ;
E. Cuesta ;
A. Durán .
Journal of Mathematical Imaging and Vision, 2017, 58 :427-446
[49]   Cross-Diffusion Systems for Image Processing: II. The Nonlinear Case [J].
Araujo, A. ;
Barbeiro, S. ;
Cuesta, E. ;
Duran, A. .
JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2017, 58 (03) :427-446
[50]   Cross-Diffusion Systems for Image Processing: I. The Linear Case [J].
Araujo, A. ;
Barbeiro, S. ;
Cuesta, E. ;
Duran, A. .
JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2017, 58 (03) :447-467