Oscillatory pulses in FitzHugh-Nagumo type systems with cross-diffusion

被引:13
作者
Zemskov, E. P. [1 ,2 ]
Epstein, I. R. [1 ,2 ]
Muntean, A. [3 ]
机构
[1] Brandeis Univ, Dept Chem, Waltham, MA 02454 USA
[2] Russian Acad Sci, Ctr Comp, Moscow 119333, Russia
[3] Tech Univ Eindhoven, Dept Math & Comp Sci, Inst Complex Mol Syst, NL-5600 MB Eindhoven, Netherlands
来源
MATHEMATICAL MEDICINE AND BIOLOGY-A JOURNAL OF THE IMA | 2011年 / 28卷 / 02期
基金
俄罗斯基础研究基金会; 美国国家科学基金会;
关键词
cross-diffusion; reaction-diffusion systems; pulse solutions; pattern formation; TRAVELING-WAVE SOLUTIONS;
D O I
10.1093/imammb/dqq012
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We study FitzHugh-Nagumo type reaction-diffusion systems with linear cross-diffusion terms. Based on an analytical description using piecewise linear approximations of the reaction functions, we completely describe the occurrence and properties of wavy pulses, patterns of relevance in several biological contexts, in two prototypical systems. The pulse wave profiles arising in this treatment contain oscillatory tails similar to those in travelling fronts. We find a fundamental, intrinsic feature of pulse dynamics in cross-diffusive systems-the appearance of pulses in the bistable regime when two fixed points exist.
引用
收藏
页码:217 / 226
页数:10
相关论文
共 50 条
[31]   ON LIMIT SYSTEMS FOR SOME POPULATION MODELS WITH CROSS-DIFFUSION [J].
Kuto, Kousuke ;
Yamada, Yoshio .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2012, 17 (08) :2745-2769
[32]   Influence of self- and cross-diffusion on wave train solutions of reaction-diffusion systems [J].
Mukhopadhyay, B ;
Bhattacharyya, R .
INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2005, 36 (07) :415-422
[33]   Canard-Like Explosion of Limit Cycles in Two-Dimensional Piecewise-Linear Models of FitzHugh-Nagumo Type [J].
Rotstein, Horacio G. ;
Coombes, Stephen ;
Gheorghe, Ana Maria .
SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2012, 11 (01) :135-180
[34]   On triangular reaction cross-diffusion systems with possible self-diffusion [J].
Trescases, A. .
BULLETIN DES SCIENCES MATHEMATIQUES, 2016, 140 (07) :796-829
[35]   DOMAIN-GROWTH-INDUCED PATTERNING FOR REACTION-DIFFUSION SYSTEMS WITH LINEAR CROSS-DIFFUSION [J].
Madzvamuse, Anotida ;
Barreira, Raquel .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2018, 23 (07) :2775-2801
[36]   EXISTENCE OF TRAVELING WAVES WITH TRANSITION LAYERS FOR SOME DEGENERATE CROSS-DIFFUSION SYSTEMS [J].
Wu, Yanxia ;
Wu, Yaping .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2012, 11 (03) :911-934
[37]   Study of a class of triangular starvation driven cross-diffusion systems [J].
Brocchieri, Elisabetta ;
Desvillettes, Laurent ;
Dietert, Helge .
RICERCHE DI MATEMATICA, 2025, 74 (03) :1373-1399
[38]   Oscillatory multipulsons: Dissipative soliton trains in bistable reaction-diffusion systems with cross diffusion of attractive-repulsive type [J].
Zemskov, Evgeny P. ;
Tsyganov, Mikhail A. ;
Horsthemke, Werner .
PHYSICAL REVIEW E, 2020, 101 (03)
[39]   When do cross-diffusion systems have an entropy structure? [J].
Chen, Xiuqing ;
Juengel, Ansgar .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 278 :60-72
[40]   Entropic structure and duality for multiple species cross-diffusion systems [J].
Lepoutre, Thomas ;
Moussa, Ayman .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2017, 159 :298-315