Calcium Signaling in Neocortical Development

被引:46
作者
Uhlen, Per [1 ]
Fritz, Nicolas [2 ]
Smedler, Erik [1 ]
Malmersjoe, Seth [3 ]
Kanatani, Shigeaki [1 ]
机构
[1] Karolinska Inst, Dept Med Biochem & Biophys, SE-17177 Stockholm, Sweden
[2] Royal Inst Technol, Sci Life Lab, SE-17177 Stockholm, Sweden
[3] Stanford Univ, Sch Med, Dept Chem & Syst Biol, Stanford, CA 94305 USA
基金
瑞典研究理事会;
关键词
calcium signaling; neocortical development; proliferation; migration; differentiation; RADIAL GLIAL-CELLS; SPINAL GANGLION CELLS; NEURONAL MIGRATION; ELECTRICAL-ACTIVITY; NMDA RECEPTORS; FLUORESCENT PROTEINS; DENDRITIC GROWTH; PROGENITOR CELLS; GABA; WAVES;
D O I
10.1002/dneu.22273
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The calcium ion (Ca2+) is an essential second messenger that plays a pivotal role in neurogenesis. In the ventricular zone (VZ) of the neocortex, neural stem cells linger to produce progenitor cells and subsequently neurons and glial cells, which together build up the entire adult brain. The radial glial cells, with their characteristic radial fibers that stretch from the inner ventricular wall to the outer cortex, are known to be the neural stem cells of the neocortex. Migrating neurons use these radial fibers to climb from the proliferative VZ in the inner part of the brain to the outer layers of the cortex, where differentiation processes continue. To establish the complex structures that constitute the adult cerebral cortex, proliferation, migration, and differentiation must be tightly controlled by various signaling events, including cytosolic Ca2+ signaling. During development, cells regularly exhibit spontaneous Ca2+ activity that stimulates downstream effectors, which can elicit these fundamental cell processes. Spontaneous Ca2+ activity during early neocortical development depends heavily on gap junctions and voltage dependent Ca2+ channels, whereas later in development neurotransmitters and synapses exert an influence. Here, we provide an overview of the literature on Ca2+ signaling and its impact on cell proliferation, migration, and differentiation in the neocortex. We point out important historical studies and review recent progress in determining the role of Ca2+ signaling in neocortical development. (c) 2015 Wiley Periodicals, Inc. Develop Neurobiol 75: 360-368, 2015
引用
收藏
页码:360 / 368
页数:9
相关论文
共 97 条
[1]   Control of Cortical Axon Elongation by a GABA-Driven Ca2+/Calmodulin-Dependent Protein Kinase Cascade [J].
Ageta-Ishihara, Natsumi ;
Takemoto-Kimura, Sayaka ;
Nonaka, Mio ;
Adachi-Morishima, Aki ;
Suzuki, Kanzo ;
Kamijo, Satoshi ;
Fujii, Hajime ;
Mano, Tatsuo ;
Blaeser, Frank ;
Chatila, Talal A. ;
Mizuno, Hidenobu ;
Hirano, Tomoo ;
Tagawa, Yoshiaki ;
Okuno, Hiroyuki ;
Bito, Haruhiko .
JOURNAL OF NEUROSCIENCE, 2009, 29 (43) :13720-13729
[2]   RET tyrosine kinase signaling in development and cancer [J].
Arighi, E ;
Borrello, MG ;
Sariola, H .
CYTOKINE & GROWTH FACTOR REVIEWS, 2005, 16 (4-5) :441-467
[3]  
Bando Y., 2014, Cereb. Cortex, pbhu180
[4]   Dysfunction of KCNK Potassium Channels Impairs Neuronal Migration in the Developing Mouse Cerebral Cortex [J].
Bando, Yuki ;
Hirano, Tomoo ;
Tagawa, Yoshiaki .
CEREBRAL CORTEX, 2014, 24 (04) :1017-1029
[5]   Network biology:: Understanding the cell's functional organization [J].
Barabási, AL ;
Oltvai, ZN .
NATURE REVIEWS GENETICS, 2004, 5 (02) :101-U15
[6]   Maternally inherited Birk barel mental retardation dysmorphism syndrome caused by a mutation in the genomically imprinted potassium channel KCNK9 [J].
Barel, Ortal ;
Shalev, Stavit A. ;
Ofir, Rivka ;
Cohen, Asi ;
Zlotogora, Joel ;
Shorer, Zamir ;
Mazor, Galia ;
Finer, Gal ;
Khateeb, Shareef ;
Zilberberg, Noam ;
Birk, Ohad S. .
AMERICAN JOURNAL OF HUMAN GENETICS, 2008, 83 (02) :193-199
[7]   Modelling the coupling between intracellular calcium release and the cell cycle during cortical brain development [J].
Barrack, Duncan S. ;
Thul, Ruediger ;
Owen, Markus R. .
JOURNAL OF THEORETICAL BIOLOGY, 2014, 347 :17-32
[8]  
Behar TN, 1999, J NEUROSCI, V19, P4449
[9]   GABA receptor antagonists modulate postmitotic cell migration in slice cultures of embryonic rat cortex [J].
Behar, TN ;
Schaffner, AE ;
Scott, CA ;
Greene, CL ;
Barker, JL .
CEREBRAL CORTEX, 2000, 10 (09) :899-909
[10]   Calcium signalling: Dynamics, homeostasis and remodelling [J].
Berridge, MJ ;
Bootman, MD ;
Roderick, HL .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2003, 4 (07) :517-529