LipostarMSI: Comprehensive, Vendor-Neutral Software for Visualization, Data Analysis, and Automated Molecular Identification in Mass Spectrometry Imaging

被引:58
作者
Tortorella, Sara [1 ,2 ]
Tiberi, Paolo [3 ]
Bowman, Andrew P. [4 ]
Claes, Britt S. R. [4 ]
Scupakova, Klara [4 ]
Heeren, Ron M. A. [4 ]
Ellis, Shane R. [4 ]
Cruciani, Gabriele [2 ,5 ]
机构
[1] Mol Horizon Srl, Via Montelino 30, I-06084 Perugia, Italy
[2] Consortium Computat Mol & Mat Sci CMS2, Via Elce Sotto 8, I-06123 Perugia, Italy
[3] Mol Discovery Ltd, Centennial Pk, Borehamwood WD6 3FG, Herts, England
[4] Maastricht Univ, Maastricht MultiModal Mol Imaging M4I Inst, Univ Singel 50, NL-6229 ER Maastricht, Netherlands
[5] Univ Perugia, Dept Chem Biol & Biotechnol, Via Elce Sotto 8, I-06123 Perugia, Italy
关键词
mass spectrometry imaging; bioinformatics; metabolomics; lipidomics; chemometrics; SPATIAL SEGMENTATION; ELECTROSPRAY-IONIZATION; HIGH-RESOLUTION; BREAST-CANCER; R PACKAGE; MALDI; TISSUE; MS; CLASSIFICATION; DISCOVERY;
D O I
10.1021/jasms.9b00034
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Mass Spectrometry Imaging (MSI) is an established and powerful MS technique that enables molecular mapping of tissues and cells finding widespread applications in academic, medical, and pharmaceutical industries. As both the applications and MSI technology have undergone rapid growth and improvement, the challenges associated both with analyzing large datasets and identifying the many detected molecular species have become apparent. The lack of readily available and comprehensive software covering all necessary data analysis steps has further compounded this challenge. To address this issue we developed LipostarMSI, comprehensive and vendor-neutral software for targeted and untargeted MSI data analysis. Through user-friendly implementation of image visualization and co-registration, univariate and multivariate image and spectral analysis, and for the first time, advanced lipid, metabolite, and drug metabolite (MetID) automated identification, LipostarMSI effectively streamlines biochemical interpretation of the data. Here, we introduce LipostarMSI and case studies demonstrating the versatility and many capabilities of the software.
引用
收藏
页码:155 / 163
页数:17
相关论文
共 74 条
  • [1] Lipid-Pro: a computational lipid identification solution for untargeted lipidomics on data-independent acquisition tandem mass spectrometry platforms
    Ahmed, Zeeshan
    Mayr, Michel
    Zeeshan, Saman
    Dandekar, Thomas
    Mueller, Martin J.
    Fekete, Agnes
    [J]. BIOINFORMATICS, 2015, 31 (07) : 1150 - 1153
  • [2] Testing for presence of known and unknown molecules in imaging mass spectrometry
    Alexandrov, Theodore
    Bartels, Andreas
    [J]. BIOINFORMATICS, 2013, 29 (18) : 2335 - 2342
  • [3] MALDI imaging mass spectrometry: statistical data analysis and current computational challenges
    Alexandrov, Theodore
    [J]. BMC BIOINFORMATICS, 2012, 13
  • [4] Efficient spatial segmentation of large imaging mass spectrometry datasets with spatially aware clustering
    Alexandrov, Theodore
    Kobarg, Jan Hendrik
    [J]. BIOINFORMATICS, 2011, 27 (13) : I230 - I238
  • [5] Spatial Segmentation of Imaging Mass Spectrometry Data with Edge-Preserving Image Denoising and Clustering
    Alexandrov, Theodore
    Becker, Michael
    Deininger, Soren-Oliver
    Ernst, Gunther
    Wehder, Liane
    Grasmair, Markus
    von Eggeling, Ferdinand
    Thiele, Herbert
    Maass, Peter
    [J]. JOURNAL OF PROTEOME RESEARCH, 2010, 9 (12) : 6535 - 6546
  • [6] [Anonymous], 2016, IMAGE PROCESSING HDB
  • [7] Design and Performance of a Novel Interface for Combined Matrix-Assisted Laser Desorption Ionization at Elevated Pressure and Electrospray Ionization with Orbitrap Mass Spectrometry
    Belov, Mikhail E.
    Ellis, Shane R.
    Dilillo, Marialaura
    Paine, Martin R. L.
    Danielson, William F.
    Anderson, Gordon A.
    de Graaf, Erik L.
    Eijkel, Gert B.
    Heeren, Ron M. A.
    McDonnell, Liam A.
    [J]. ANALYTICAL CHEMISTRY, 2017, 89 (14) : 7493 - 7501
  • [8] Cardinal: an R package for statistical analysis of mass spectrometry-based imaging experiments
    Bemis, Kyle D.
    Harry, April
    Eberlin, Livia S.
    Ferreira, Christina
    van de Ven, Stephanie M.
    Mallick, Parag
    Stolowitz, Mark
    Vitek, Olga
    [J]. BIOINFORMATICS, 2015, 31 (14) : 2418 - 2420
  • [9] CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING
    BENJAMINI, Y
    HOCHBERG, Y
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) : 289 - 300
  • [10] MSiReader v1.0: Evolving Open-Source Mass Spectrometry Imaging Software for Targeted and Untargeted Analyses
    Bokhart, Mark T.
    Nazari, Milad
    Garrard, Kenneth P.
    Muddiman, David C.
    [J]. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY, 2018, 29 (01) : 8 - 16