Effect of Al addition and heat treatment on the microstructures and corrosion resistance of Mg-Cu alloys

被引:37
作者
Wang, X. W. [1 ,2 ]
Wang, W. [1 ,2 ]
Chen, W. [1 ,2 ]
Chen, D. M. [1 ,2 ]
机构
[1] Chinese Acad Sci, Shi Changxu Innovat Ctr Adv Mat, Inst Met Res, Shenyang 110016, Peoples R China
[2] Univ Sci & Technol China, Coll Mat Sci & Engn, Shenyang 110016, Peoples R China
来源
JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY | 2022年 / 98卷
基金
中国国家自然科学基金;
关键词
Magnesium; Intermetallics; Weight loss; EIS (electrochemical impedance spectroscopy); AZ31 MAGNESIUM ALLOY; MECHANICAL-PROPERTIES; IMPEDANCE SPECTROSCOPY; DEGRADATION RATE; BEHAVIOR; AZ91; ALUMINUM; COPPER; ELEMENTS; DESIGN;
D O I
10.1016/j.jmst.2021.05.010
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The effects of Al content and annealing condition on the microstructures and corrosion performances of Mg-3 wt.%Cu- x Al ( x = 0, 4 wt.%, 8 wt.%) alloys were investigated. The Mg-3 wt.%Cu alloy contains Mg 2 Cu phase, but Al-bearing alloys contain MgAlCu and Mg 17 Al 12 phases. The Mg 2 Cu and MgAlCu phases exhibit much higher Volta potential compared to Mg 17 Al 12 and alpha-Mg, and their volume fractions are related to Al content of alloys and annealing condition. The weight loss measurement and electrochemical tests are conducted to explore the corrosion performances of alloys. The close relationship between weight loss rate of alloys and volume fraction of Cu-bearing phases indicates that the corrosion performances of alloys can be controlled by adjusting Al content of alloys and annealing conditions. (c) 2022 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology.
引用
收藏
页码:219 / 232
页数:14
相关论文
共 49 条
[11]  
Dix EH, 1932, T AM I MIN MET ENG, V99, P119
[12]   Fundamentals and advances in magnesium alloy corrosion [J].
Esmaily, M. ;
Svensson, J. E. ;
Fajardo, S. ;
Birbilis, N. ;
Frankel, G. S. ;
Virtanen, S. ;
Arrabal, R. ;
Thomas, S. ;
Johansson, L. G. .
PROGRESS IN MATERIALS SCIENCE, 2017, 89 :92-193
[13]   New insights into the corrosion of magnesium alloys - The role of aluminum [J].
Esmaily, M. ;
Blucher, D. B. ;
Svensson, J. E. ;
Halvarsson, M. ;
Johansson, L. G. .
SCRIPTA MATERIALIA, 2016, 115 :91-95
[14]   XPS study of the effect of aluminium on the atmospheric corrosion of the AZ31 magnesium alloy [J].
Feliu, S., Jr. ;
Merino, M. C. ;
Arrabal, R. ;
Coy, A. E. ;
Matykina, E. .
SURFACE AND INTERFACE ANALYSIS, 2009, 41 (03) :143-150
[15]   Microstructure, mechanical properties, and corrosion behavior of degradable Mg-Al-Cu-Zn-Gd alloys [J].
Geng, Zhenwei ;
Xiao, Daihong ;
Chen, Liang .
JOURNAL OF ALLOYS AND COMPOUNDS, 2016, 686 :145-152
[16]   Influence of the microstructure on the corrosion behaviour of cast Mg-Al alloys [J].
Grimm, Michael ;
Lohmueller, Andreas ;
Singer, Robert F. ;
Virtanen, Sannakaisa .
CORROSION SCIENCE, 2019, 155 :195-208
[17]  
Haughton JL, 1935, J I MET, V57, P287
[18]   Numerical simulation of complex fracture growth during tight reservoir stimulation by hydraulic fracturing [J].
Hossain, Md. Mofazzal ;
Rahman, M. K. .
JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2008, 60 (02) :86-104
[19]   Volta Potentials Measured by Scanning Kelvin Probe Force Microscopy as Relevant to Corrosion of Magnesium Alloys [J].
Hurley, M. F. ;
Efaw, C. M. ;
Davis, P. H. ;
Croteau, J. R. ;
Graugnard, E. ;
Birbilis, N. .
CORROSION, 2015, 71 (02) :160-170
[20]   Electrochemical corrosion behavior of biodegradable Mg-Y-RE and Mg-Zn-Zr alloys in Ringer's solution and simulated body fluid [J].
Jamesh, Mohammed Ibrahim ;
Wu, Guosong ;
Zhao, Ying ;
McKenzie, David R. ;
Bilek, Marcela M. M. ;
Chu, Paul K. .
CORROSION SCIENCE, 2015, 91 :160-184