Hollow Beaded Fe3C/N-Doped Carbon Fibers toward Broadband Microwave Absorption

被引:136
|
作者
Guo, Rundong [1 ]
Su, Dong [1 ]
Chen, Fu [2 ]
Cheng, Yongzhi [2 ]
Wang, Xian [1 ]
Gong, Rongzhou [1 ]
Luo, Hui [2 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Opt & Elect Informat, Wuhan 430074, Peoples R China
[2] Wuhan Univ Sci & Technol, Sch Informat Sci & Engn, Wuhan 430081, Peoples R China
基金
中国国家自然科学基金;
关键词
hollow beaded structure; microwave absorption; interfacial polarization; MIL-88A; electrospinning; ELECTROMAGNETIC-WAVE ABSORPTION; NI-AT-C; NANOFIBERS; COMPOSITES; GRAPHENE; NANOPARTICLES; SPECTROSCOPY; CEMENTITE; NANOCUBES;
D O I
10.1021/acsami.1c21272
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Microwave-absorbing materials have attracted enormous attention for electromagnetic (EM) pollution. Herein, hollow beaded Fe3C/N-doped carbon fibers (Fe3C/NCFs) were synthesized through convenient electrospinning and subsequent thermal treatment. The special hollow morphology of the samples is conducive to achieve lightweight and broadband microwave absorption properties. The thermal treatment temperatures exhibit a significant impact on conductivity and EM properties. The broadest effective absorption bandwidth (EAB) is 5.28 GHz at 2.16 mm when the thermal treatment temperature is 700 degrees C, and the EAB can cover 13.13 GHz with a tunable absorber thickness from 1.0 to 3.5 mm when the thermal treatment temperature is 750 degrees C. The excellent microwave absorption properties of the samples are due to the synergistic effect of impedance matching and strong EM energy attenuation abilities. Hence, the magnetic hollow beaded Fe3C/NCFs are expected to be an attractive candidate material as a lightweight and efficient microwave absorber in the future.
引用
收藏
页码:3084 / 3094
页数:11
相关论文
共 50 条
  • [31] Heterostructure engineering of N-doped Co@ carbon nanotubes toward broadband efficient electromagnetic absorption
    Wu, Dan
    Lan, Di
    Li, Yingqi
    Zhou, Nifan
    He, Qinchuan
    Wang, Yiqun
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2024, 702
  • [32] A facile method to fabricate macropores and high-content pyridine N-doped carbon in hollow Co/C toward high-efficient microwave absorption
    Wang, Lei
    Wang, Tong
    Zhu, Shuheng
    Zong, Meng
    Zhu, Jianfeng
    APPLIED SURFACE SCIENCE, 2024, 656
  • [33] Polyacrylonitrile-Derived Nitrogen-Doped Carbon Nanoparticles Decorated with Fe3C for Wide-Band Microwave Dissipation
    Yin, Pengfei
    Zhang, Limin
    Wang, Jian
    Feng, Xing
    JOURNAL OF ELECTRONIC MATERIALS, 2023, 52 (11) : 7371 - 7383
  • [34] MoS2/N-doped hollow carbon foam for thermal insulation and broadband electromagnetic wave absorption
    Guo, Xiaoli
    Nie, Zhuguang
    Feng, Yang
    Jiang, Mingyu
    Zhao, Zhiyue
    Yang, Xiaonan
    Wang, Rumin
    Qi, Shuhua
    JOURNAL OF ALLOYS AND COMPOUNDS, 2025, 1010
  • [35] Fe/Fe3C nanoparticles embedded in N-doped porous carbon as the heterogeneous electro-Fenton catalyst for efficient degradation of bisphenol A
    Zhang, Chao
    Ye, Mengxiang
    Li, Huaimeng
    Liu, Zhenzhen
    Fu, Zhen
    Zhang, Haimin
    Wang, Guozhong
    Zhang, Yunxia
    SEPARATION AND PURIFICATION TECHNOLOGY, 2023, 316
  • [36] Fe3C Nanorods Encapsulated in N-Doped Carbon Nanotubes as Active Electrocatalysts for Hydrogen Evolution Reaction
    Lulu Zhang
    Yongting Chen
    Pingping Zhao
    Wei Luo
    Shengli Chen
    Minhua Shao
    Electrocatalysis, 2018, 9 : 264 - 270
  • [37] Electron Transfer from Encapsulated Fe3C to the Outermost N-Doped Carbon Layer for Superior ORR
    Quilez-Bermejo, Javier
    Daouli, Ayoub
    Dali, Sergio Garcia
    Cui, Yingdan
    Zitolo, Andrea
    Castro-Gutierrez, Jimena
    Emo, Melanie
    Izquierdo, Maria T.
    Mustain, William
    Badawi, Michael
    Celzard, Alain
    Fierro, Vanessa
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (40)
  • [38] Hierarchical MnO2 nanosheets decorated on hollow co/N-doped carbon toward superior electromagnetic wave absorption
    Wei, Chenhao
    Liu, Sihan
    Wang, Chenyu
    He, Zizhuang
    Liu, Panbo
    He, Mukun
    Gu, Junwei
    MATERIALS TODAY NANO, 2025, 30
  • [39] Well-Dispersed Ni Nanoparticles Loaded on Uniform Hollow N-Doped Carbon Spheres for Outstanding Microwave Absorption Performance at a Low Filler Loading
    Min, Weixing
    Liu, Dongxuan
    Chen, Ping
    Zhu, Xiaoyu
    Qiu, Hongfang
    JOURNAL OF ELECTRONIC MATERIALS, 2021, 50 (08) : 4866 - 4879
  • [40] Broadband and strong microwave absorption of Fe/Fe3C/C core-shell spherical chains enhanced by dual dielectric relaxation and dual magnetic resonances
    Sun, Jia Cheng
    He, Zidong
    Dong, Wenjing
    Wu, Wenhua
    Tong, Guoxiu
    JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 782 : 193 - 202