On Superactivation of Zero-Error Capacities and Reversibility of a Quantum Channel

被引:19
作者
Shirokov, M. E. [1 ]
Shulman, Tatiana [2 ]
机构
[1] RAS, Steklov Math Inst, Moscow 117901, Russia
[2] Polish Acad Sci, Inst Math, PL-00956 Warsaw, Poland
关键词
COMMUNICATION;
D O I
10.1007/s00220-015-2345-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose examples of low dimensional quantum channels demonstrating different forms of superactivation of one-shot zero-error capacities, in particular, the extreme superactivation (this complements the recent result of Cubitt and Smith). We also describe classes of quantum channels whose zero-error classical and quantum capacities cannot be superactivated. We consider implications of the superactivation of one-shot zero-error capacities to analysis of reversibility of a tensor-product channel with respect to families of pure states. Our approach based on the notions of complementary channel and of transitive subspace of operators makes it possible to study the superactivation effects for infinite-dimensional channels as well.
引用
收藏
页码:1159 / 1179
页数:21
相关论文
共 24 条
[1]  
[Anonymous], 2009, ARXIV09062527
[2]  
[Anonymous], 2012, QUANTUM SYSTEMS CHAN
[3]  
AZOFF EA, 1986, MEM AM MATH SOC, V64, P1
[4]   Multi-mode bosonic Gaussian channels [J].
Caruso, F. ;
Eisert, J. ;
Giovannetti, V. ;
Holevo, A. S. .
NEW JOURNAL OF PHYSICS, 2008, 10
[5]   An Extreme Form of Superactivation for Quantum Zero-Error Capacities [J].
Cubitt, Toby S. ;
Smith, Graeme .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2012, 58 (03) :1953-1961
[6]   Superactivation of the Asymptotic Zero-Error Classical Capacity of a Quantum Channel [J].
Cubitt, Toby S. ;
Chen, Jianxin ;
Harrow, Aram W. .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2011, 57 (12) :8114-8126
[7]   The structure of degradable quantum channels [J].
Cubitt, Toby S. ;
Ruskai, Mary Beth ;
Smith, Graeme .
JOURNAL OF MATHEMATICAL PHYSICS, 2008, 49 (10)
[8]   Transitive spaces of operators [J].
Davidson, Kenneth R. ;
Marcoux, Laurent W. ;
Radjavi, Heydar .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2008, 61 (02) :187-210
[9]   Unextendible product bases, uncompletable product bases and bound entanglement [J].
DiVincenzo, DP ;
Mor, T ;
Shor, PW ;
Smolin, JA ;
Terhal, BM .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 238 (03) :379-410
[10]  
Duan R., COMMUNICATION