Sharp regularity estimates for second order fully nonlinear parabolic equations

被引:21
|
作者
Silva, Joao Vitor da [1 ]
Teixeira, Eduardo V. [2 ]
机构
[1] Univ Buenos Aires, Ciudad Univ Pabellon C1428EGA, Dept Math, FCEyN, Buenos Aires, DF, Argentina
[2] Univ Fed Ceara, Dept Matemat, Campus Piei,Bloco 914, BR-60455760 Fortaleza, Ceara, Brazil
关键词
35B65; 35K10;
D O I
10.1007/s00208-016-1506-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove sharp regularity estimates for viscosity solutions of fully nonlinear parabolic equations of the form u(t) - F (D(2)u, Du, X, t) = f (X, t) in Q(1), ( Eq) where F is elliptic with respect to the Hessian argument and f is an element of L-p,L-q (Q(1)). The quantity Xi(n, p, q) := n/p + 2/q determines to which regularity regime a solution of (Eq) belongs. We prove that when 1 < Xi(n, p, q) < 2 - epsilon F, solutions are parabolically alpha-Holder continuous for a sharp, quantitative exponent 0 < alpha(n, p, q) < 1. Precisely at the critical borderline case, Xi(n, p, q) = 1, we obtain sharp parabolic Log-Lipschitz regularity estimates. When 0 < Xi(n, p, q) < 1, solutions are locally of class C-1+sigma,C- 1+sigma/2 and in the limiting case Xi(n, p, q) = 0, we show parabolic C-1,C-Log-Lip regularity estimates provided F has "better" a priori estimates.
引用
收藏
页码:1623 / 1648
页数:26
相关论文
共 50 条