Tuza's Conjecture is Asymptotically Tight for Dense Graphs

被引:11
作者
Baron, Jacob D. [1 ]
Kahn, Jeff [1 ]
机构
[1] Rutgers State Univ, Dept Math, Piscataway, NJ 08854 USA
基金
美国国家科学基金会;
关键词
PACKING;
D O I
10.1017/S0963548316000067
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
An old conjecture of Z. Tuza says that for any graph G, the ratio of the minimum size, tau(3)(G), of a set of edges meeting all triangles to the maximum size, nu(3)(G), of an edge-disjoint triangle packing is at most 2. Here, disproving a conjecture of R. Yuster, we show that for any fixed, positive a there are arbitrarily large graphs G of positive density satisfying tau(3)(G) > (1 - o(1))|G|/2 and nu(3)(G) < (1 + alpha)|G|/4.
引用
收藏
页码:645 / 667
页数:23
相关论文
共 15 条
[1]  
Alon N., 2008, The Probabilistic Method
[2]  
[Anonymous], GRADUATE TEXTS MATH
[3]  
[Anonymous], FINITE INFINITE SETS
[4]  
[Anonymous], 1994, ELECTRON J COMB
[5]  
[Anonymous], WILEY INTERSCIENCE S
[6]  
Diestel Reinhard, 2017, Graduate Texts in Mathematics, V173
[7]  
GERKE S, 2005, LONDON MATH SOC LECT, V327
[8]   Integer and fractional packings in dense graphs [J].
Haxell, PE ;
Rödl, V .
COMBINATORICA, 2001, 21 (01) :13-38
[9]   Packing and covering triangles in graphs [J].
Haxell, PE .
DISCRETE MATHEMATICS, 1999, 195 (1-3) :251-254
[10]  
Kohayakawa Y., 1997, FDN COMPUTATIONAL MA, P216