Triboelectric Nanogenerator Enabled Body Sensor Network for Self-Powered Human Heart-Rate Monitoring

被引:414
|
作者
Lin, Zhiming [1 ]
Chen, Jun [2 ]
Li, Xiaoshi [1 ]
Zhou, Zhihao [1 ]
Meng, Keyu [1 ]
Wei, Wei [1 ]
Yang, Jin [1 ]
Wang, Zhong Lin [2 ,3 ]
机构
[1] Chongqing Univ, Dept Optoelect Engn, Chongqing 400044, Peoples R China
[2] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA
[3] Chinese Acad Sci, Beijing Inst Nanoenergy & Nanosyst, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
self-powered body sensor network; triboelectric nanogenerator; downy structure; power management circuit; heart-rate monitoring; WEARABLE ELECTRONICS; ENERGY; SYSTEM; DRIVEN; GENERATOR;
D O I
10.1021/acsnano.7b02975
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Heart-rate monitoring plays a critical role in personal healthcare management. A low-cost, noninvasive, and user-friendly heart-rate monitoring system is highly desirable. Here, a self-powered wireless body sensor network (BSN) system is developed for heart-rate monitoring via integration of a downy structure-based triboelectric nanogenerator (D-TENG), a power management circuit, a heart-rate sensor, a signal processing unit, and Bluetooth module for wireless data transmission. By converting the inertia energy of human walking into electric power, a maximum power of 2.28 mW with total conversion efficiency of 57.9% was delivered at low operation frequency, which is capable of immediately and sustainably driving the highly integrated BSN system. The acquired heart-rate signal by the sensor would be processed in the signal process circuit, sent to an external device via the Bluetooth module, and displayed on a personal cell phone in a real-time manner. Moreover, by combining a TENG-based generator and a TENG-based sensor, an all-TENG-based wireless BSN system was developed, realizing continuous and self-powered heart-rate monitoring. This work presents a potential method for personal heart-rate monitoring, featured as being self-powered, cost-effective, noninvasive, and user-friendly.
引用
收藏
页码:8830 / 8837
页数:8
相关论文
共 50 条
  • [1] Self-Powered Respiration Monitoring Enabled By a Triboelectric Nanogenerator
    Su, Yuanjie
    Chen, Guorui
    Chen, Chunxu
    Gong, Qichen
    Xie, Guangzhong
    Yao, Mingliang
    Tai, Huiling
    Jiang, Yadong
    Chen, Jun
    ADVANCED MATERIALS, 2021, 33 (35)
  • [2] On-vehicle triboelectric nanogenerator enabled self-powered sensor for tire pressure monitoring
    Qian, Jingui
    Kim, Dong-Su
    Lee, Dong-Weon
    NANO ENERGY, 2018, 49 : 126 - 136
  • [3] Human Body Electrode Enabled Direct Current Triboelectric Nanogenerator for Self-Powered Wireless Human Motion and Environment Monitoring
    Xia, Lianbin
    Zhou, Hao
    Chen, Jinkai
    Liu, Fuhai
    Chang, Shiyuan
    Huang, Yuhuai
    Jiang, Jingyang
    Dong, Kang
    Wu, Yun
    Zhang, Chenhao
    Xuan, Weipeng
    Dong, Shurong
    Luo, Jikui
    ADVANCED ELECTRONIC MATERIALS, 2024, 10 (06)
  • [4] Triboelectric nanogenerator as self-powered impact sensor
    Garcia, Cristobal
    Trendafilova, Irina
    Guzman de Villoria, Roberto
    Sanchez del Rio, Jose
    INTERNATIONAL CONFERENCE ON ENGINEERING VIBRATION (ICOEV 2017), 2018, 148
  • [5] Triboelectric nanogenerator for self-powered traffic monitoring
    Behera, Swayam Aryam
    Kim, Hang-Gyeom
    Jang, Il Ryu
    Hajra, Sugato
    Panda, Swati
    Vittayakorn, Naratip
    Kim, Hoe Joon
    Achary, P. Ganga Raju
    MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2024, 303
  • [6] Large Scale Triboelectric Nanogenerator and Self-Powered Flexible Sensor for Human Sleep Monitoring
    Ding, Xiaoheng
    Cao, Hailin
    Zhang, Xinghong
    Li, Mingyu
    Liu, Yuntian
    SENSORS, 2018, 18 (06)
  • [7] Self-Powered Acoustic Sensor Based on Triboelectric Nanogenerator for Smart Monitoring
    Li, Yingzhe
    Liu, Chaoran
    Hu, Sanshan
    Sun, Peng
    Fang, Lingxing
    Lazarouk, Serguei
    Labunov, Vladimir
    Yang, Weihuang
    Li, Dujuan
    Fan, Kai
    Wang, Gaofeng
    Dong, Linxi
    Che, Lufeng
    ACOUSTICS AUSTRALIA, 2022, 50 (03) : 383 - 391
  • [8] Self-Powered Acoustic Sensor Based on Triboelectric Nanogenerator for Smart Monitoring
    Yingzhe Li
    Chaoran Liu
    Sanshan Hu
    Peng Sun
    Lingxing Fang
    Serguei Lazarouk
    Vladimir Labunov
    Weihuang Yang
    Dujuan Li
    Kai Fan
    Gaofeng Wang
    Linxi Dong
    Lufeng Che
    Acoustics Australia, 2022, 50 : 383 - 391
  • [9] Self-Powered Magnetic Sensor Based on a Triboelectric Nanogenerator
    Yang, Ya
    Lin, Long
    Zhang, Yue
    Jing, Qingshen
    Hou, Te-Chien
    Wang, Zhong Lin
    ACS NANO, 2012, 6 (11) : 10378 - 10383
  • [10] Triboelectric Nanogenerator Based Self-Powered Tilt Sensor
    Iqbal, Faisal
    Shafi, Muhammad
    Khattak, Muhammad Irfan
    Nawaz, Aamir
    TEHNICKI VJESNIK-TECHNICAL GAZETTE, 2018, 25 (02): : 325 - 328