Identification of PSMB9 and CXCL13 as Immune-related Diagnostic Markers for Rheumatoid Arthritis by Machine Learning

被引:13
作者
Li, Zhuo [1 ,2 ]
Chen, Yue [2 ]
Zulipikaer, Maimaiti [2 ]
Xu, Chi [2 ]
Fu, Jun [2 ]
Deng, Tao [2 ]
Hao, Li-Bo [2 ]
Chen, Ji-Ying [2 ]
机构
[1] Nankai Univ, Sch Med, Tianjin, Peoples R China
[2] Chinese Peoples Liberat Army Gen Hosp, Dept Orthoped Surg, Beijing 100853, Peoples R China
关键词
Rheumatoid arthritis; diagnostic markers; immune cells; machine learning; bioinformatics; DENDRITIC CELLS; TH17; CELLS; T-CELLS; MACROPHAGES; IMMUNOPATHOGENESIS; EXPRESSION; DELIVERY; RECEPTOR;
D O I
10.2174/1381612828666220831085608
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Background: Rheumatoid arthritis (RA) is a chronic inflammatory disease that causes significant physical and psychological damage. Although researchers have gained a better understanding of the mechanisms of RA, there are still difficulties in diagnosing and treating RA. We applied a data mining approach based on machine learning algorithms to explore new RA biomarkers and local immune cell status. Methods: We extracted six RA synovial microarray datasets from the GEO database and used bioinformatics to obtain differentially expressed genes (DEGs) and associated functional enrichment pathways. In addition, we identified potential RA diagnostic markers by machine learning strategies and validated their diagnostic ability for early RA and established RA, respectively. Next, CIBERSORT and ssGSEA analyses explored alterations in synovium-infiltrating immune cell subpopulations and immune cell functions in the RA synovium. Moreover, we examined the correlation between biomarkers and immune cells to understand their immune-related molecular mechanisms in the pathogenesis of RA. Results: We obtained 373 DEGs (232 upregulated and 141 downregulated genes) between RA and healthy controls. Enrichment analysis revealed a robust correlation between RA and immune response. Comprehensive analysis indicated PSMB9, CXCL13, and LRRC15 were possible potential markers. PSMB9 (AUC: 0.908, 95% CI: 0.853-0.954) and CXCL13 (AUC: 0.890, 95% CI: 0.836-0.937) also showed great diagnostic ability in validation dataset. Infiltrations of 16 kinds of the immune cell were changed, with macrophages being the predominant infiltrating cell type. Most proinflammatory pathways in immune cell function were activated in RA. The correlation analysis found the strongest positive correlation between CXCL13 and plasma cells, PSMB9, and macrophage M1. Conclusion: There is a robust correlation between RA and local immune response. The immune-related CXCL13 and PSMB9 were identified as potential diagnostic markers for RA based on a machine learning approach. Further in-depth exploration of the target genes and associated immune cells can deepen the understanding of RA pathophysiological processes and provide new insights into diagnosing and treating RA.
引用
收藏
页码:2842 / 2854
页数:13
相关论文
共 70 条
[1]   2010 Rheumatoid Arthritis Classification Criteria An American College of Rheumatology/European League Against Rheumatism Collaborative Initiative [J].
Aletaha, Daniel ;
Neogi, Tuhina ;
Silman, Alan J. ;
Funovits, Julia ;
Felson, David T. ;
Bingham, Clifton O., III ;
Birnbaum, Neal S. ;
Burmester, Gerd R. ;
Bykerk, Vivian P. ;
Cohen, Marc D. ;
Combe, Bernard ;
Costenbader, Karen H. ;
Dougados, Maxime ;
Emery, Paul ;
Ferraccioli, Gianfranco ;
Hazes, Johanna M. W. ;
Hobbs, Kathryn ;
Huizinga, Tom W. J. ;
Kavanaugh, Arthur ;
Kay, Jonathan ;
Kvien, Tore K. ;
Laing, Timothy ;
Mease, Philip ;
Menard, Henri A. ;
Moreland, Larry W. ;
Naden, Raymond L. ;
Pincus, Theodore ;
Smolen, Josef S. ;
Stanislawska-Biernat, Ewa ;
Symmons, Deborah ;
Tak, Paul P. ;
Upchurch, Katherine S. ;
Vencovsky, Jiri ;
Wolfe, Frederick ;
Hawker, Gillian .
ARTHRITIS AND RHEUMATISM, 2010, 62 (09) :2569-2581
[2]   Delivery of miR-146a to Ly6Chigh Monocytes Inhibits Pathogenic Bone Erosion in Inflammatory Arthritis [J].
Ammari, Meryem ;
Presumey, Jessy ;
Ponsolles, Clara ;
Roussignol, Gautier ;
Roubert, Christine ;
Escriou, Virginie ;
Toupet, Karine ;
Mausset-Bonnefont, Anne-Laure ;
Cren, Mailys ;
Robin, Maxime ;
Georgel, Philippe ;
Nehmar, Ramzi ;
Taams, Leonie ;
Gruen, Joachim ;
Gruetzkau, Andrea ;
Haeupl, Thomas ;
Pers, Yves-Marie ;
Jorgensen, Christian ;
Duroux-Richard, Isabelle ;
Courties, Gabriel ;
Apparailly, Florence .
THERANOSTICS, 2018, 8 (21) :5972-5985
[3]   Th17 Cells in Immunopathogenesis and treatment of rheumatoid arthritis [J].
Azizi, Gholamreza ;
Jadidi-Niaragh, Farhad ;
Mirshafiey, Abbas .
INTERNATIONAL JOURNAL OF RHEUMATIC DISEASES, 2013, 16 (03) :243-253
[4]   Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1 [J].
Barbie, David A. ;
Tamayo, Pablo ;
Boehm, Jesse S. ;
Kim, So Young ;
Moody, Susan E. ;
Dunn, Ian F. ;
Schinzel, Anna C. ;
Sandy, Peter ;
Meylan, Etienne ;
Scholl, Claudia ;
Froehling, Stefan ;
Chan, Edmond M. ;
Sos, Martin L. ;
Michel, Kathrin ;
Mermel, Craig ;
Silver, Serena J. ;
Weir, Barbara A. ;
Reiling, Jan H. ;
Sheng, Qing ;
Gupta, Piyush B. ;
Wadlow, Raymond C. ;
Le, Hanh ;
Hoersch, Sebastian ;
Wittner, Ben S. ;
Ramaswamy, Sridhar ;
Livingston, David M. ;
Sabatini, David M. ;
Meyerson, Matthew ;
Thomas, Roman K. ;
Lander, Eric S. ;
Mesirov, Jill P. ;
Root, David E. ;
Gilliland, D. Gary ;
Jacks, Tyler ;
Hahn, William C. .
NATURE, 2009, 462 (7269) :108-U122
[5]   NCBI GEO: archive for functional genomics data sets-update [J].
Barrett, Tanya ;
Wilhite, Stephen E. ;
Ledoux, Pierre ;
Evangelista, Carlos ;
Kim, Irene F. ;
Tomashevsky, Maxim ;
Marshall, Kimberly A. ;
Phillippy, Katherine H. ;
Sherman, Patti M. ;
Holko, Michelle ;
Yefanov, Andrey ;
Lee, Hyeseung ;
Zhang, Naigong ;
Robertson, Cynthia L. ;
Serova, Nadezhda ;
Davis, Sean ;
Soboleva, Alexandra .
NUCLEIC ACIDS RESEARCH, 2013, 41 (D1) :D991-D995
[6]   The role of synovial macrophages and macrophage-produced cytokines in driving aggrecanases, matrix metalloproteinases, and other destructive and inflammatory responses in osteoarthritis [J].
Bondeson, Jan ;
Wainwright, Shane D. ;
Lauder, Sarah ;
Amos, Nick ;
Hughes, Clare E. .
ARTHRITIS RESEARCH & THERAPY, 2006, 8 (06)
[7]   B Cells in Rheumatoid Arthritis: From Pathogenic Players to Disease Biomarkers [J].
Bugatti, Serena ;
Vitolo, Barbara ;
Caporali, Roberto ;
Montecucco, Carlomaurizio ;
Manzo, Antonio .
BIOMED RESEARCH INTERNATIONAL, 2014, 2014
[8]   Deduction of Novel Genes Potentially Involved in Osteoblasts of Rheumatoid Arthritis Using Next-Generation Sequencing and Bioinformatic Approaches [J].
Chen, Yi-Jen ;
Chang, Wei-An ;
Hsu, Ya-Ling ;
Chen, Chia-Hsin ;
Kuo, Po-Lin .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2017, 18 (11)
[9]   Three hematologic/immune system-specific expressed genes are considered as the potential biomarkers for the diagnosis of early rheumatoid arthritis through bioinformatics analysis [J].
Cheng, Qi ;
Chen, Xin ;
Wu, Huaxiang ;
Du, Yan .
JOURNAL OF TRANSLATIONAL MEDICINE, 2021, 19 (01)
[10]  
Cope AP, 2007, CLIN EXP RHEUMATOL, V25, pS4