Adaptive multiprecision path tracking

被引:68
作者
Bates, Daniel J. [1 ]
Hauenstein, Jonathan D. [2 ]
Sommese, Andrew J. [2 ]
Wampler, Charles W., II [3 ]
机构
[1] Univ Minnesota, Inst Math & Applicat, Minneapolis, MN 55122 USA
[2] Univ Notre Dame, Dept Math, Notre Dame, IN 46556 USA
[3] GM Corp, Res & Dev, Warren, MI 48090 USA
关键词
homotopy continuation; numerical algebraic geometry; polynomial systems; Bertini;
D O I
10.1137/060658862
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article treats numerical methods for tracking an implicitly defined path. The numerical precision required to successfully track such a path is difficult to predict a priori, and indeed it may change dramatically through the course of the path. In current practice, one must either choose a conservatively large numerical precision at the outset or rerun paths multiple times in successively higher precision until success is achieved. To avoid unnecessary computational cost, it would be preferable to adaptively adjust the precision as the tracking proceeds in response to the local conditioning of the path. We present an algorithm that can be set to either reactively adjust precision in response to step failure or proactively set the precision using error estimates. We then test the relative merits of reactive and proactive adaptation on several examples arising as homotopies for solving systems of polynomial equations.
引用
收藏
页码:722 / 746
页数:25
相关论文
共 28 条
  • [1] ALLGOWER EL, 2003, CALSSICS APPL MATH, V45
  • [2] [Anonymous], SPRINGER SER COMPUT
  • [3] BATES DJ, BETINI SOFTWARE NUME
  • [4] Demmel JW., 1997, APPL NUMERICAL LINEA
  • [5] GARGANTINI I, 1972, NUMER MATH, V18, P305, DOI 10.1007/BF01404681
  • [6] AN INTERVAL STEP CONTROL FOR CONTINUATION METHODS
    KEARFOTT, RB
    XING, ZY
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1994, 31 (03) : 892 - 914
  • [7] INTBIS, A PORTABLE INTERVAL NEWTON BISECTION PACKAGE
    KEARFOTT, RB
    NOVOA, M
    [J]. ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1990, 16 (02): : 152 - 157
  • [8] Knuth D.E., 1969, ART COMPUTER PROGRAM, V2, DOI 10.2307/2283757
  • [9] LEYKIN A, 2005, P INT WORKSH SYMB NU, P19
  • [10] Li T. Y., 1997, Acta Numerica, V6, P399, DOI 10.1017/S0962492900002749