Pollux: Interactive Cluster-First Projections of High-Dimensional Data

被引:0
作者
Wenskovitch, John [1 ]
North, Chris [1 ]
机构
[1] Virginia Tech, Discovery Analyt Ctr, Blacksburg, VA 24060 USA
来源
2019 IEEE VISUALIZATION IN DATA SCIENCE (VDS) | 2019年
关键词
Dimension reduction; clustering; semantic interaction; exploratory data analysis;
D O I
10.1109/vds48975.2019.8973381
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Semantic interaction is a technique relying upon the interactive semantic exploration of data. When an analyst manipulates data items within a visualization, an underlying model learns from the intent underlying these interactions, updating the parameters of the model controlling the visualization. In this work, we propose, implement. and evaluate a model which defines clusters within this data projection, then projects these clusters into a two-dimensional space using a "proximity similarity" metaphor. These clusters act as targets against which data values can be manipulated, providing explicit user-driven cluster membership assignments to train the underlying models. Using this cluster-first approach can improve the speed and efficiency of laying out a projection of high-dimensional data, with the tradeoff of distorting the global projection space.
引用
收藏
页码:38 / 47
页数:10
相关论文
共 56 条
[1]   ASK-GraphView: A large scale graph visualization system [J].
Abello, James ;
van Ham, Frank ;
Krishnan, Neeraj .
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2006, 12 (05) :669-676
[2]  
Amorim EPD, 2012, IEEE CONF VIS ANAL, P53, DOI 10.1109/VAST.2012.6400489
[3]  
Andrienko Gennady, 2009, Proceedings of the 2009 IEEE Symposium on Visual Analytics Science and Technology. VAST 2009. Held co-jointly with VisWeek 2009, P3, DOI 10.1109/VAST.2009.5332584
[4]  
Andrienko G, 2009, LECT NOTES COMPUT SC, V5644, P432, DOI 10.1007/978-3-642-02982-0_34
[5]  
[Anonymous], IEEE COMPUTER GRAPHI
[6]  
[Anonymous], 24 AAAI C ART INT
[7]  
[Anonymous], STAT DAT CTR PROGR
[8]  
[Anonymous], 2007, P 24 INT C MACH LEAR
[9]  
[Anonymous], 2012, WIRES DATA MIN KNOWL, DOI [DOI 10.1002/widm.1057, 10.1002/widm.1057]
[10]  
[Anonymous], J BIG DATA RES SPECI