Demonstration of a small programmable quantum computer with atomic qubits

被引:562
作者
Debnath, S. [1 ]
Linke, N. M. [1 ]
Figgatt, C. [1 ]
Landsman, K. A. [1 ]
Wright, K. [1 ]
Monroe, C. [1 ,2 ,3 ]
机构
[1] Univ Maryland, Dept Phys, Joint Quantum Inst, College Pk, MD 20742 USA
[2] Univ Maryland, Joint Ctr Quantum Informat & Comp Sci, College Pk, MD 20742 USA
[3] IonQ Inc, College Pk, MD 20742 USA
基金
美国国家科学基金会;
关键词
DEUTSCH-JOZSA ALGORITHM; EXPERIMENTAL REALIZATION; IMPLEMENTATION; ENTANGLEMENT;
D O I
10.1038/nature18648
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Quantum computers can solve certain problems more efficiently than any possible conventional computer. Small quantum algorithms have been demonstrated on multiple quantum computing platforms, many specifically tailored in hardware to implement a particular algorithm or execute a limited number of computational paths(1-10). Here we demonstrate a five-qubit trapped-ion quantum computer that can be programmed in software to implement arbitrary quantum algorithms by executing any sequence of universal quantum logic gates. We compile algorithms into a fully connected set of gate operations that are native to the hardware and have a mean fidelity of 98 per cent. Reconfiguring these gate sequences provides the flexibility to implement a variety of algorithms without altering the hardware. As examples, we implement the Deutsch-Jozsa(11) and Bernstein-Vazirani(12) algorithms with average success rates of 95 and 90 per cent, respectively. We also perform a coherent quantum Fourier transform(13,14) on five trapped-ion qubits for phase estimation and period finding with average fidelities of 62 and 84 per cent, respectively. This small quantum computer can be scaled to larger numbers of qubits within a single register, and can be further expanded by connecting several such modules through ion shuttling(15) or photonic quantum channels(16).
引用
收藏
页码:63 / +
页数:10
相关论文
共 37 条
  • [1] [Anonymous], PREPRINT
  • [2] [Anonymous], PREPRINT
  • [3] Superconducting quantum circuits at the surface code threshold for fault tolerance
    Barends, R.
    Kelly, J.
    Megrant, A.
    Veitia, A.
    Sank, D.
    Jeffrey, E.
    White, T. C.
    Mutus, J.
    Fowler, A. G.
    Campbell, B.
    Chen, Y.
    Chen, Z.
    Chiaro, B.
    Dunsworth, A.
    Neill, C.
    O'Malley, P.
    Roushan, P.
    Vainsencher, A.
    Wenner, J.
    Korotkov, A. N.
    Cleland, A. N.
    Martinis, John M.
    [J]. NATURE, 2014, 508 (7497) : 500 - 503
  • [4] Quantum complexity theory
    Bernstein, E
    Vazirani, U
    [J]. SIAM JOURNAL ON COMPUTING, 1997, 26 (05) : 1411 - 1473
  • [5] Fiber-optics implementation of the Deutsch-Jozsa and Bernstein-Vazirani quantum algorithms with three qubits
    Brainis, E
    Lamoureux, LP
    Cerf, NJ
    Emplit, P
    Haelterman, M
    Massar, S
    [J]. PHYSICAL REVIEW LETTERS, 2003, 90 (15) : 4
  • [6] Implementation of Grover's quantum search algorithm in a scalable system
    Brickman, KA
    Haljan, PC
    Lee, PJ
    Acton, M
    Deslauriers, L
    Monroe, C
    [J]. PHYSICAL REVIEW A, 2005, 72 (05):
  • [7] Implementation of the semiclassical quantum Fourier transform in a scalable system
    Chiaverini, J
    Britton, J
    Leibfried, D
    Knill, E
    Barrett, MD
    Blakestad, RB
    Itano, WP
    Jost, JD
    Langer, C
    Ozeri, R
    Schaetz, T
    Wineland, DJ
    [J]. SCIENCE, 2005, 308 (5724) : 997 - 1000
  • [8] Optimal Quantum Control of Multimode Couplings between Trapped Ion Qubits for Scalable Entanglement
    Choi, T.
    Debnath, S.
    Manning, T. A.
    Figgatt, C.
    Gong, Z. -X.
    Duan, L. -M.
    Monroe, C.
    [J]. PHYSICAL REVIEW LETTERS, 2014, 112 (19)
  • [9] QUANTUM COMPUTATIONS WITH COLD TRAPPED IONS
    CIRAC, JI
    ZOLLER, P
    [J]. PHYSICAL REVIEW LETTERS, 1995, 74 (20) : 4091 - 4094
  • [10] Individual addressing of trapped 171Yb+ ion qubits using a microelectromechanical systems-based beam steering system
    Crain, S.
    Mount, E.
    Baek, S.
    Kim, J.
    [J]. APPLIED PHYSICS LETTERS, 2014, 105 (18)