Tissue equivalence correction for silicon microdosimetry detectors in boron neutron capture therapy

被引:41
|
作者
Bradley, PD [1 ]
Rosenfeld, AB [1 ]
机构
[1] Univ Wollongong, Radiat Phys Grp, Wollongong, NSW 2522, Australia
关键词
BNCT; microdosimetry; tissue equivalence;
D O I
10.1118/1.598421
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Reverse-biased silicon p-n junction arrays have been proposed as microdosimetry detectors. The tissue equivalence of such detectors in boron neutron capture therapy (BNCT) is discussed. A comparison of the range-energy relationships of H, He, C, and Li ions in tissue (ICRU-muscle) and silicon is given. A simple geometrical scaling (similar to 0.63) of linear dimensions is required to convert microdosimetric energy deposition measurements performed in silicon to equivalent deposition in tissue. The Monte Carlo technique is used to examine energy deposition for two simple geometrical cases applicable to BNCT. (C) 1998 American Association of Physicists in Medicine. [S0094-2405(98)00710-X].
引用
收藏
页码:2220 / 2225
页数:6
相关论文
共 50 条
  • [21] The role of boron MRI in boron neutron capture therapy
    Kabalka, GW
    Tang, C
    Bendel, P
    JOURNAL OF NEURO-ONCOLOGY, 1997, 33 (1-2) : 153 - 161
  • [22] The role of boron MRI in boron neutron capture therapy
    George W. Kabalka
    Chao Tang
    Peter Bendel
    Journal of Neuro-Oncology, 1997, 33 : 153 - 161
  • [23] Simulations of silicon microdosimetry measurements in fast neutron therapy.
    Cornelius I.
    Rosenfeld A.
    Bradley P.
    Australasian Physical and Engineering Sciences in Medicine, 2002, 25 (04) : 168 - 171
  • [24] Boron carbide nanoparticles for boron neutron capture therapy
    Xu, Shiwei
    Yu, Ying
    Zhang, Boyu
    Zhu, Kejia
    Cheng, Yuan
    Zhang, Tao
    RSC ADVANCES, 2025, 15 (14) : 10717 - 10730
  • [25] Fast Neutron Beams for Boron Neutron Capture Therapy?
    Wolber, Gerd
    Zeitschrift fur Medizinische Physik, 2004, 14 (01): : 55 - 63
  • [26] Gel dosimeters as useful dose and thermal-fluence detectors in boron neutron capture therapy
    Gambarini, G.
    Moss, R. L.
    Mariani, M.
    Carrara, M.
    Daquino, G. G.
    Nievaart, V. A.
    Valente, M.
    Vanossi, E.
    RADIATION EFFECTS AND DEFECTS IN SOLIDS, 2007, 162 (10-12): : 777 - 783
  • [27] Boron-Containing MOF Nanoparticles with Stable Metabolism in U87-MG Cells Combining Microdosimetry To Evaluate Relative Biological Effectiveness of Boron Neutron Capture Therapy
    Wang, Zhijie
    Lei, Runhong
    Zhang, Zizhu
    Chen, Ziteng
    Zhang, Jiaxin
    Mao, Meiru
    Li, Jiacheng
    Tang, Hongyu
    Li, Mengyao
    Luo, Xianwei
    Yang, Jingru
    Yan, Ruyu
    Liu, Qiuyang
    Lv, Linwen
    Chen, Kui
    Chang, Ya-nan
    Yuan, Hui
    Liu, Tong
    Tong, Jianfei
    Zhu, Linbo
    Liang, Tianjiao
    Zhang, Weihua
    Li, Juan
    Xing, Gengmei
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (03) : 3232 - 3242
  • [28] RENAISSANCE OF THE BORON NEUTRON CAPTURE THERAPY, BNCT
    Gryzinski, M. A.
    Maciak, M.
    Wielgosz, M.
    RAD 2015: THE THIRD INTERNATIONAL CONFERENCE ON RADIATION AND APPLICATIONS IN VARIOUS FIELDS OF RESEARCH, 2015, : 79 - 81
  • [29] Boron neutron capture therapy for brain tumors
    Yamamoto, Tetsuya
    Tsuboi, Koji
    Nakai, Kei
    Kumada, Hiroaki
    Sakurai, Hideyuki
    Matsumura, Akira
    TRANSLATIONAL CANCER RESEARCH, 2013, 2 (02) : 80 - 86
  • [30] Ligand liposomes and boron neutron capture therapy
    Carlsson, J
    Kullberg, EB
    Capala, J
    Sjöberg, S
    Edwards, K
    Gedda, L
    JOURNAL OF NEURO-ONCOLOGY, 2003, 62 (01) : 47 - 59