Machine Learning-Based Model for Predicting Incidence and Severity of Acute Ischemic Stroke in Anterior Circulation Large Vessel Occlusion

被引:8
作者
Cui, Junzhao [1 ]
Yang, Jingyi [2 ]
Zhang, Kun [1 ]
Xu, Guodong [3 ]
Zhao, Ruijie [4 ]
Li, Xipeng [4 ]
Liu, Luji [1 ]
Zhu, Yipu [1 ]
Zhou, Lixia [5 ]
Yu, Ping [1 ]
Xu, Lei [1 ]
Li, Tong [1 ]
Tian, Jing [1 ]
Zhao, Pandi [1 ]
Yuan, Si [1 ]
Wang, Qisong [1 ]
Guo, Li [1 ]
Liu, Xiaoyun [1 ,6 ]
机构
[1] Hebei Med Univ, Hosp 2, Dept Neurol, Shijiazhuang, Hebei, Peoples R China
[2] Hebei Med Univ, Hosp 2, Dept Informat Ctr, Shijiazhuang, Hebei, Peoples R China
[3] Hebei Prov Peoples Hosp, Dept Neurol, Shijiazhuang, Hebei, Peoples R China
[4] Xingtai Peoples Hosp, Dept Neurol, Xingtai, Peoples R China
[5] Hebei Med Univ, Hosp 2, Dept Med Iconog, Shijiazhuang, Hebei, Peoples R China
[6] Hebei Med Univ, Med & Hlth Inst, Neurosci Res Ctr, Shijiazhuang, Hebei, Peoples R China
来源
FRONTIERS IN NEUROLOGY | 2021年 / 12卷
基金
中国国家自然科学基金;
关键词
anterior circulation large vessel occlusion; acute ischemic stroke; machine learning; prediction model; neurological impairment; HEALTH-CARE PROFESSIONALS; ARTERY-OCCLUSION; PREHOSPITAL SCALE; HOMOCYSTEINE; DESIGN; VALIDATION;
D O I
10.3389/fneur.2021.749599
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Objectives: Patients with anterior circulation large vessel occlusion are at high risk of acute ischemic stroke, which could be disabling or fatal. In this study, we applied machine learning to develop and validate two prediction models for acute ischemic stroke (Model 1) and severity of neurological impairment (Model 2), both caused by anterior circulation large vessel occlusion (AC-LVO), based on medical history and neuroimaging data of patients on admission.Methods: A total of 1,100 patients with AC- LVO from the Second Hospital of Hebei Medical University in North China were enrolled, of which 713 patients presented with acute ischemic stroke (AIS) related to AC- LVO and 387 presented with the non-acute ischemic cerebrovascular event. Among patients with the non-acute ischemic cerebrovascular events, 173 with prior stroke or TIA were excluded. Finally, 927 patients with AC-LVO were entered into the derivation cohort. In the external validation cohort, 150 patients with AC-LVO from the Hebei Province People's Hospital, including 99 patients with AIS related to AC- LVO and 51 asymptomatic AC-LVO patients, were retrospectively reviewed. We developed four machine learning models [logistic regression (LR), regularized LR (RLR), support vector machine (SVM), and random forest (RF)], whose performance was internally validated using 5-fold cross-validation. The performance of each machine learning model for the area under the receiver operating characteristic curve (ROC-AUC) was compared and the variables of each algorithm were ranked.Results: In model 1, among the included patients with AC-LVO, 713 (76.9%) and 99 (66%) suffered an acute ischemic stroke in the derivation and external validation cohorts, respectively. The ROC-AUC of LR, RLR and SVM were significantly higher than that of the RF in the external validation cohorts [0.66 (95% CI 0.57-0.74) for LR, 0.66 (95% CI 0.57-0.74) for RLR, 0.55 (95% CI 0.45-0.64) for RF and 0.67 (95% CI 0.58-0.76) for SVM]. In model 2, 254 (53.9%) and 31 (37.8%) patients suffered disabling ischemic stroke in the derivation and external validation cohorts, respectively. There was no difference in AUC among the four machine learning algorithms in the external validation cohorts.Conclusions: Machine learning methods with multiple clinical variables have the ability to predict acute ischemic stroke and the severity of neurological impairment in patients with AC-LVO.
引用
收藏
页数:12
相关论文
共 40 条
  • [1] Coronary risk evaluation in patients with transient ischemic attack and ischemic stroke - A scientific statement for healthcare professionals from the stroke council and the council on clinical cardiology of the American Heart Association/American Stroke Association
    Adams, RJ
    Chimowitz, MI
    Alpert, JS
    Awad, IA
    Cerqueria, MD
    Fayad, P
    Taubert, KA
    [J]. STROKE, 2003, 34 (09) : 2310 - 2322
  • [2] The impact of APOA5, APOB, APOC3 and ABCA1 gene polymorphisms on ischemic stroke: Evidence from a meta-analysis
    Au, Anthony
    Griffiths, Lyn R.
    Irene, Looi
    Kooi, Cheah Wee
    Wei, Loo Keat
    [J]. ATHEROSCLEROSIS, 2017, 265 : 60 - 70
  • [3] Is there a consistent association between coronary heart disease and ischemic stroke caused by intracranial atherosclerosis?
    Conforto, Adriana B.
    Leite, Claudia da Costa
    Nomura, Cesar H.
    Bor-Seng-Shu, Edson
    Santos, Raul D.
    [J]. ARQUIVOS DE NEURO-PSIQUIATRIA, 2013, 71 (05) : 320 - 326
  • [4] Dardik R, 2000, THROMB HAEMOSTASIS, V83, P338
  • [5] Importance of early ischemic computed tomography changes using ASPECTS in NINDS rtPA stroke study
    Demchuk, AM
    Hill, MD
    Barber, PA
    Silver, B
    Patel, SC
    Levine, SR
    [J]. STROKE, 2005, 36 (10) : 2110 - 2115
  • [6] Stroke Prevention in Atrial Fibrillation and Other Major Cardiac Sources of Embolism
    Freeman, William D.
    Aguilar, Maria I.
    [J]. NEUROLOGIC CLINICS, 2008, 26 (04) : 1129 - 1160
  • [8] Randomized Assessment of Rapid Endovascular Treatment of Ischemic Stroke
    Goyal, M.
    Demchuk, A. M.
    Menon, B. K.
    Eesa, M.
    Rempel, J. L.
    Thornton, J.
    Roy, D.
    Jovin, T. G.
    Willinsky, R. A.
    Sapkota, B. L.
    Dowlatshahi, D.
    Frei, D. F.
    Kamal, N. R.
    Montanera, W. J.
    Poppe, A. Y.
    Ryckborst, K. J.
    Silver, F. L.
    Shuaib, A.
    Tampieri, D.
    Williams, D.
    Bang, O. Y.
    Baxter, B. W.
    Burns, P. A.
    Choe, H.
    Heo, J. -H.
    Holmstedt, C. A.
    Jankowitz, B.
    Kelly, M.
    Linares, G.
    Mandzia, J. L.
    Shankar, J.
    Sohn, S. -I.
    Swartz, R. H.
    Barber, P. A.
    Coutts, S. B.
    Smith, E. E.
    Morrish, W. F.
    Weill, A.
    Subramaniam, S.
    Mitha, A. P.
    Wong, J. H.
    Lowerison, M. W.
    Sajobi, T. T.
    Hill, M. D.
    [J]. NEW ENGLAND JOURNAL OF MEDICINE, 2015, 372 (11) : 1019 - 1030
  • [9] Endovascular thrombectomy after large-vessel ischaemic stroke: a meta-analysis of individual patient data from five randomised trials
    Goyal, Mayank
    Menon, Bijoy K.
    van Zwam, Wim H.
    Dippel, Diederik W. J.
    Mitchell, Peter J.
    Demchuk, Andrew M.
    Davalos, Antoni
    Majoie, Charles B. L. M.
    van der Lugt, Aad
    de Miquel, Maria A.
    Donnan, Geoff Rey A.
    Roos, Yvo B. W. E. M.
    Bonafe, Alain
    Jahan, Reza
    Diener, Hans-Christoph
    van den Berg, Lucie A.
    Levy, Elad I.
    Berkhemer, Olvert A.
    Pereira, Vitor M.
    Rempel, Jeremy
    Millan, Monica
    Davis, Stephen M.
    Roy, Daniel
    Thornton, John
    San Roman, Luis
    Ribo, Marc
    Beumer, Debbie
    Stouch, Bruce
    Brown, Scott
    Campbell, Bruce C. V.
    van Oostenbrugge, Robert J.
    Saver, Jeff Rey L.
    Hill, Michael D.
    Jovin, Tudor G.
    [J]. LANCET, 2016, 387 (10029) : 1723 - 1731
  • [10] Prehospital Acute Stroke Severity Scale to Predict Large Artery Occlusion Design and Comparison With Other Scales
    Hastrup, Sidsel
    Damgaard, Dorte
    Johnsen, Soren Paaske
    Andersen, Grethe
    [J]. STROKE, 2016, 47 (07) : 1772 - 1776