Hybrid Projective Synchronization of Fractional Order Volta's System via Active Control

被引:0
作者
Shukla, Manoj [1 ]
Sharma, B. B. [1 ]
机构
[1] Natl Inst Technol, Dept Elect Engn, Hamirpur, HP, India
来源
2015 2ND INTERNATIONAL CONFERENCE ON RECENT ADVANCES IN ENGINEERING & COMPUTATIONAL SCIENCES (RAECS) | 2015年
关键词
Volta's system; chaotic system; synchronization; active control; fractional order; UNCERTAIN CHAOTIC SYSTEMS; ADAPTIVE SYNCHRONIZATION; GENERALIZED SYNCHRONIZATION; LAG SYNCHRONIZATION; UNKNOWN-PARAMETERS; OSCILLATORS;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper proposes an active control based approach for hybrid projective synchronization of fractional order chaotic Volta's system. Stability and model description of Volta's system is discussed. The validity of controller has been confirmed by using Laplace transform. Software simulations are performed to prove the validity of proposed synchronization approach.
引用
收藏
页数:6
相关论文
共 34 条
[21]  
Podlubny I., 2002, Fract. Calc. Appl. Anal, V5, P367, DOI DOI 10.48550/ARXIV.MATH/0110241
[22]  
Podlubny Igor, 1998, Fractional differential equationsM
[23]   Phase synchronization of chaotic oscillators [J].
Rosenblum, MG ;
Pikovsky, AS ;
Kurths, J .
PHYSICAL REVIEW LETTERS, 1996, 76 (11) :1804-1807
[24]   Lag synchronization in time-delayed systems [J].
Shahverdiev, EM ;
Sivaprakasam, S ;
Shore, KA .
PHYSICS LETTERS A, 2002, 292 (06) :320-324
[25]   Observer-based synchronization scheme for a class of chaotic systems using contraction theory [J].
Sharma, B. B. ;
Kar, I. N. .
NONLINEAR DYNAMICS, 2011, 63 (03) :429-445
[26]   Contraction theory based adaptive synchronization of chaotic systems [J].
Sharma, B. B. ;
Kar, I. N. .
CHAOS SOLITONS & FRACTALS, 2009, 41 (05) :2437-2447
[27]   Robust nonlinear H-infinity synchronization of chaotic Lur'e systems [J].
Suykens, JAK ;
Curran, PF ;
Vandewalle, J ;
Chua, LO .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 1997, 44 (10) :891-904
[28]   Synchronization of chaotic fractional-order systems via active sliding mode controller [J].
Tavazoei, Mohammad Saleh ;
Haeri, Mohammad .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2008, 387 (01) :57-70
[29]   Two direct Tustin discretization methods for fractional-order differentiator/integrator [J].
Vinagre, BM ;
Chen, YQ ;
Petrás, I .
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2003, 340 (05) :349-362
[30]   A New Scheme to Projective Synchronization of Fractional-Order Chaotic Systems [J].
Wang Jun-Wei ;
Chen Ai-Min .
CHINESE PHYSICS LETTERS, 2010, 27 (11)