Optimal weights for local multi-atlas fusion using supervised learning and dynamic information (SuperDyn): Validation on hippocampus segmentation

被引:54
作者
Khan, Ali R. [1 ]
Cherbuin, Nicolas [2 ]
Wen, Wei [3 ]
Anstey, Kaarin J. [2 ]
Sachdev, Perminder [3 ]
Beg, Mirza Faisal [1 ]
机构
[1] Simon Fraser Univ, Sch Engn Sci, Burnaby, BC V5A 1S6, Canada
[2] Australian Natl Univ, Mental Hlth Res Ctr, Canberra, ACT 0200, Australia
[3] Univ New S Wales, Sch Psychiat, Sydney, NSW 2052, Australia
基金
英国医学研究理事会; 加拿大自然科学与工程研究理事会;
关键词
Segmentation; MRI; Hippocampus; Weighted voting; Classifier combination; Segmentation validation; MILD COGNITIVE IMPAIRMENT; TEMPORAL-LOBE EPILEPSY; IMAGE SEGMENTATION; BRAIN SEGMENTATION; ALZHEIMER-DISEASE; SHAPE-ANALYSIS; MRI; DEFORMATION; SELECTION; DEMENTIA;
D O I
10.1016/j.neuroimage.2011.01.078
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
We developed a novel method for spatially-local selection of atlas-weights in multi-atlas segmentation that combines supervised learning on a training set and dynamic information in the form of local registration accuracy estimates (SuperDyn). Supervised learning was applied using a jackknife learning approach and the methods were evaluated using leave-N-out cross-validation. We applied our segmentation method to hippocampal segmentation in 1.5T and 3T MRI from two datasets: 69 healthy middle-aged subjects (aged 4449) and 37 healthy and cognitively-impaired elderly subjects (aged 72-84). Mean Dice overlap scores (left hippocampus, right hippocampus) of (83.3, 83.2) and (85.1, 85.3) from the respective datasets were found to be significantly higher than those obtained via equally-weighted fusion. STAPLE, and dynamic fusion. In addition to global surface distance and volume metrics, we also investigated accuracy at a spatially-local scale using a surface-based segmentation performance assessment method (SurfSPA), which generates cohort-specific maps of segmentation accuracy quantified by inward or outward displacement relative to the manual segmentations. These measurements indicated greater agreement with manual segmentation and lower variability for the proposed segmentation method, as compared to equally-weighted fusion. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:126 / 139
页数:14
相关论文
共 36 条
[1]   Multi-atlas based segmentation of brain images: Atlas selection and its effect on accuracy [J].
Aljabar, P. ;
Heckemann, R. A. ;
Hammers, A. ;
Hajnal, J. V. ;
Rueckert, D. .
NEUROIMAGE, 2009, 46 (03) :726-738
[2]   3D comparison of hippocampal atrophy in amnestic mild cognitive impairment and Alzheimer's disease [J].
Apostolova, Liana G. ;
Dinov, Ivo D. ;
Dutton, Rebecca A. ;
Hayashi, Kiralee M. ;
Toga, Arthur W. ;
Cummings, Jeffrey L. ;
Thompson, Paul M. .
BRAIN, 2006, 129 :2867-2873
[3]   Combination Strategies in Multi-Atlas Image Segmentation: Application to Brain MR Data [J].
Artaechevarria, Xabier ;
Munoz-Barrutia, Arrate ;
Ortiz-de-Solorzano, Carlos .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2009, 28 (08) :1266-1277
[4]   A COMPUTERIZED SYSTEM FOR THE ELASTIC MATCHING OF DEFORMED RADIOGRAPHIC IMAGES TO IDEALIZED ATLAS IMAGES [J].
BAJCSY, R ;
LIEBERSON, R ;
REIVICH, M .
JOURNAL OF COMPUTER ASSISTED TOMOGRAPHY, 1983, 7 (04) :618-625
[5]   Computing large deformation metric mappings via geodesic flows of diffeomorphisms [J].
Beg, MF ;
Miller, MI ;
Trouvé, A ;
Younes, L .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2005, 61 (02) :139-157
[6]   In Vivo Hippocampal Measurement and Memory: A Comparison of Manual Tracing and Automated Segmentation in a Large Community-Based Sample [J].
Cherbuin, Nicolas ;
Anstey, Kaarin J. ;
Reglade-Meslin, Chantal ;
Sachdev, Perminder S. .
PLOS ONE, 2009, 4 (04)
[7]   Sequence-independent segmentation of magnetic resonance images [J].
Fischl, B ;
Salat, DH ;
van der Kouwe, AJW ;
Makris, N ;
Ségonne, F ;
Quinn, BT ;
Dale, AM .
NEUROIMAGE, 2004, 23 :S69-S84
[8]   Whole brain segmentation: Automated labeling of neuroanatomical structures in the human brain [J].
Fischl, B ;
Salat, DH ;
Busa, E ;
Albert, M ;
Dieterich, M ;
Haselgrove, C ;
van der Kouwe, A ;
Killiany, R ;
Kennedy, D ;
Klaveness, S ;
Montillo, A ;
Makris, N ;
Rosen, B ;
Dale, AM .
NEURON, 2002, 33 (03) :341-355
[9]  
Gibson E, 2009, LECT NOTES COMPUT SC, V5761, P713, DOI 10.1007/978-3-642-04268-3_88
[10]   Automatic detection and quantification of hippocampal atrophy on MRI in temporal lobe epilepsy: A proof-of-principle study [J].
Hammers, Alexander ;
Heckemann, Rolf ;
Koepp, Matthias J. ;
Duncan, John S. ;
Hajnal, Jo V. ;
Rueckert, Daniel ;
Alabar, Paul .
NEUROIMAGE, 2007, 36 (01) :38-47