On LCD, self dual and isodual cyclic codes over finite chain rings

被引:1
作者
Benyettou, Amel [1 ]
Batoul, Aicha [1 ]
Fernandez-Cordoba, Cristina [2 ]
机构
[1] Univ Sci & Technol Algiers Algeria, Fac Math USTHB, Bab Ezzouar, Algeria
[2] Univ Autonomous Barcelona, Dept Informat & Commun Engn, Barcelona, Spain
关键词
LCD; Isodual; Self dual; Cyclic codes; Finite chain rings;
D O I
10.1016/j.ffa.2022.101993
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, LCD cyclic, self dual and isodual codes over finite chain rings are investigated. It was proven recently that a non-free LCD cyclic code does not exist over finite chain rings. Based on algebraic number theory, we introduce necessary and sufficient conditions for which all free cyclic codes over a finite chain ring are LCD. We have also obtained conditions on the existence of non trivial self dual cyclic codes of any length when the nilpotency index of the maximal ideal of a finite chain ring is even. Further, several constructions of isodual codes are given based on the factorization of the polynomial x(n) - 1 over a finite chain ring. (C) 2022 The Author(s). Published by Elsevier Inc.
引用
收藏
页数:25
相关论文
共 20 条
  • [1] Constacyclic Codes over Finite Principal Ideal Rings
    Batoul, Aicha
    Guenda, Kenza
    Gulliver, T. Aaron
    Aydin, Nuh
    [J]. CODES, CRYPTOLOGY AND INFORMATION SECURITY, C2SI 2017, 2017, 10194 : 161 - 175
  • [2] On Isodual Cyclic Codes over Finite Chain Rings
    Batoul, Aicha
    Guenda, Kenza
    Gulliver, T. Aaron
    Aydin, Nuh
    [J]. CODES, CRYPTOLOGY AND INFORMATION SECURITY, C2SI 2017, 2017, 10194 : 176 - 194
  • [3] Repeated-Root Isodual Cyclic Codes over Finite Fields
    Batoul, Aicha
    Guenda, Kenza
    Gulliver, T. Aaron
    [J]. CODES, CRYPTOLOGY, AND INFORMATION SECURITY, C2SI 2015, 2015, 9084 : 119 - 132
  • [4] SOME NEW CONSTRUCTIONS OF ISODUAL AND LCD CODES OVER FINITE FIELDS
    Benahmed, Fatma-Zohra
    Guenda, Kenza
    Batoul, Aicha
    Gulliver, Thomas Aaron
    [J]. ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2019, 13 (02) : 281 - 296
  • [5] On Z2Z4-additive complementary dual codes and related LCD codes
    Benbelkacem, N.
    Borges, J.
    Dougherty, S. T.
    Fernandez-Cordoba, C.
    [J]. FINITE FIELDS AND THEIR APPLICATIONS, 2020, 62
  • [6] Bernstein D.J., 2000, LIB C CONTR MATH SUB, p94A60
  • [7] Do non-free LCD codes over finite commutative Frobenius rings exist?
    Bhowmick, Sanjit
    Fotue-Tabue, Alexandre
    Martinez-Moro, Edgar
    Bandi, Ramakrishna
    Bagchi, Satya
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2020, 88 (05) : 825 - 840
  • [8] Bucerzan D., 2018 7 INT C COMP CO
  • [9] Cyclic and negacyclic codes over finite chain rings
    Dinh, HQ
    López-Permouth, SR
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2004, 50 (08) : 1728 - 1744
  • [10] MDS and self-dual codes over rings
    Guenda, Kenza
    Gulliver, T. Aaron
    [J]. FINITE FIELDS AND THEIR APPLICATIONS, 2012, 18 (06) : 1061 - 1075