Limit cycles bifurcating from a perturbed quartic center

被引:24
作者
Coll, Bartomeu [1 ]
Llibre, Jaume [2 ]
Prohens, Rafel [1 ]
机构
[1] Univ Illes Balears, Dept Matemat & Informat, Fac Ciencies, Palma de Mallorca 07071, Spain
[2] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Catalonia, Spain
关键词
HAMILTONIAN CENTERS; GLOBAL BIFURCATION; SYSTEMS; NUMBER; FAMILY; SHAPE;
D O I
10.1016/j.chaos.2011.02.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the quartic center (x) over dot = -yf (x, y), (y) over dot = xf (x, y), with f(x,y)= (x + a) (y + b) (x + c) and abc not equal 0. Here we study the maximum number a of limit cycles which can bifurcate from the periodic orbits of this quartic center when we perturb it inside the class of polynomial vector fields of degree a, using the averaging theory of first order. We prove that 4[(n - 1)/2]+4 <= sigma <= 5[(n - 1)/2] + 14, where [eta] denotes the integer part function of eta. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:317 / 334
页数:18
相关论文
共 24 条
[1]  
Ahlfors LV., 1966, Complex Analysis
[2]  
ARNOLD VI, 1986, ENCY MATH SCI, V1
[3]   The number of limit cycles of a quintic polynomial system [J].
Atabaigi, Ali ;
Nyamoradi, Nemat ;
Zangeneh, Hamid R. Z. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2009, 57 (04) :677-684
[4]   The number of limit cycles of a quintic polynomial system with center [J].
Atabaigi, Ali ;
Nyamoradi, Nemat ;
Zangeneh, Hamid R. Z. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (7-8) :3008-3017
[5]   BIFURCATION OF LIMIT-CYCLES FROM CENTERS AND SEPARATRIX CYCLES OF PLANAR ANALYTIC SYSTEMS [J].
BLOWS, TR ;
PERKO, LM .
SIAM REVIEW, 1994, 36 (03) :341-376
[6]   Averaging methods for finding periodic orbits via Brouwer degree [J].
Buica, A ;
Llibre, J .
BULLETIN DES SCIENCES MATHEMATIQUES, 2004, 128 (01) :7-22
[7]   Limit cycles of a perturbed cubic polynomial differential center [J].
Buica, Adriana ;
Llibre, Jaume .
CHAOS SOLITONS & FRACTALS, 2007, 32 (03) :1059-1069
[8]   BIFURCATION OF LIMIT-CYCLES FROM QUADRATIC ISOCHRONES [J].
CHICONE, C ;
JACOBS, M .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1991, 91 (02) :268-326
[9]  
Coll B, 2005, DYNAM CONT DIS SER A, V12, P275
[10]   Bifurcation of Limit Cycles from a Polynomial Non-global Center [J].
Gasull, A. ;
Prohens, R. ;
Torregrosa, J. .
JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2008, 20 (04) :945-960