Harnessing the Power of Induced Pluripotent Stem Cells and Gene Editing Technology: Therapeutic Implications in Hematological Malignancies

被引:4
作者
Sidhu, Ishnoor [1 ,2 ]
Barwe, Sonali P. [1 ,2 ]
Pillai, Raju K. [3 ]
Gopalakrishnapillai, Anilkumar [1 ,2 ]
机构
[1] Nemours Childrens Hlth, Nemours Ctr Childhood Canc Res & Canc & Blood Dis, Wilmington, DE 19803 USA
[2] Univ Delaware, Dept Biol Sci, Newark, DE 19711 USA
[3] City Hope Natl Med Ctr, Dept Pathol, Natl Med Ctr, Duarte, CA 91105 USA
关键词
iPSC; gene editing; hematologic; CHRONIC MYELOID-LEUKEMIA; MOUSE MODEL; MULTIPLE-MYELOMA; CLONAL EVOLUTION; ZEBRAFISH MODEL; SELF-RENEWAL; DIFFERENTIATION; MUTATIONS; PATIENT; GENERATION;
D O I
10.3390/cells10102698
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
In vitro modeling of hematological malignancies not only provides insights into the influence of genetic aberrations on cellular and molecular mechanisms involved in disease progression but also aids development and evaluation of therapeutic agents. Owing to their self-renewal and differentiation capacity, induced pluripotent stem cells (iPSCs) have emerged as a potential source of short in supply disease-specific human cells of the hematopoietic lineage. Patient-derived iPSCs can recapitulate the disease severity and spectrum of prognosis dictated by the genetic variation among patients and can be used for drug screening and studying clonal evolution. However, this approach lacks the ability to model the early phases of the disease leading to cancer. The advent of genetic editing technology has promoted the generation of precise isogenic iPSC disease models to address questions regarding the underlying genetic mechanism of disease initiation and progression. In this review, we discuss the use of iPSC disease modeling in hematological diseases, where there is lack of patient sample availability and/or difficulty of engraftment to generate animal models. Furthermore, we describe the power of combining iPSC and precise gene editing to elucidate the underlying mechanism of initiation and progression of various hematological malignancies. Finally, we discuss the power of iPSC disease modeling in developing and testing novel therapies in a high throughput setting.
引用
收藏
页数:18
相关论文
共 127 条
[1]   Therapeutic antibody targeting of Notch1 in T-acute lymphoblastic leukemia xenografts [J].
Agnusdei, V. ;
Minuzzo, S. ;
Frasson, C. ;
Grassi, A. ;
Axelrod, F. ;
Satyal, S. ;
Gurney, A. ;
Hoey, T. ;
Seganfreddo, E. ;
Basso, G. ;
Valtorta, S. ;
Moresco, R. M. ;
Amadori, A. ;
Indraccolo, S. .
LEUKEMIA, 2014, 28 (02) :278-288
[2]   Clustered regularly interspaced short palindromic repeats (CRISPRs): the hallmark of an ingenious antiviral defense mechanism in prokaryotes [J].
Al-Attar, Sinan ;
Westra, Edze R. ;
van der Oost, John ;
Brouns, Stan J. J. .
BIOLOGICAL CHEMISTRY, 2011, 392 (04) :277-289
[3]   Perturbed hematopoiesis in the Tc1 mouse model of Down syndrome [J].
Alford, Kate A. ;
Slender, Amy ;
Vanes, Lesley ;
Li, Zhe ;
Fisher, Elizabeth M. C. ;
Nizetic, Dean ;
Orkin, Stuart H. ;
Roberts, Irene ;
Tybulewicz, Victor L. J. .
BLOOD, 2010, 115 (14) :2928-2937
[4]   Murine Models of Acute Myeloid Leukaemia [J].
Almosailleakh, Marwa ;
Schwaller, Juerg .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2019, 20 (02)
[5]   Level of RUNX1 activity is critical for leukemic predisposition but not for thrombocytopenia [J].
Antony-Debre, Ileana ;
Manchev, Vladimir T. ;
Balayn, Nathalie ;
Bluteau, Dominique ;
Tomowiak, Cecile ;
Legrand, Celine ;
Langlois, Thierry ;
Bawa, Olivia ;
Tosca, Lucie ;
Tachdjian, Gerard ;
Leheup, Bruno ;
Debili, Najet ;
Plo, Isabelle ;
Mills, Jason A. ;
French, Deborah L. ;
Weiss, Mitchell J. ;
Solary, Eric ;
Favier, Remi ;
Vainchenker, William ;
Raslova, Hana .
BLOOD, 2015, 125 (06) :930-940
[6]  
Attarwala H, 2010, J Young Pharm, V2, P332, DOI 10.4103/0975-1483.66810
[7]   Genetic Models of Leukemia in Zebrafish [J].
Baeten, Jeremy T. ;
de Jong, Jill L. O. .
FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2018, 6
[8]   Systematic Cellular Disease Models Reveal Synergistic Interaction of Trisomy 21 and GATA1 Mutations in Hematopoietic Abnormalities [J].
Banno, Kimihiko ;
Omori, Sayaka ;
Hirata, Katsuya ;
Nawa, Nobutoshi ;
Nakagawa, Natsuki ;
Nishimura, Ken ;
Ohtaka, Manami ;
Nakanishi, Mahito ;
Sakuma, Tetsushi ;
Yamamoto, Takashi ;
Toki, Tsutomu ;
Ito, Etsuro ;
Yamamoto, Toshiyuki ;
Kokubu, Chikara ;
Takeda, Junji ;
Taniguchi, Hidetoshi ;
Arahori, Hitomi ;
Wada, Kazuko ;
Kitabatake, Yasuji ;
Ozono, Keiichi .
CELL REPORTS, 2016, 15 (06) :1228-1241
[9]   Modeling Transient Abnormal Myelopoiesis Using Induced Pluripotent Stem Cells and CRISPR/Cas9 Technology [J].
Barwe, Sonali P. ;
Sidhu, Ishnoor ;
Kolb, E. Anders ;
Gopalakrishnapillai, Anilkumar .
MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT, 2020, 19 :201-209
[10]   Multilayer intraclonal heterogeneity in chronic myelomonocytic leukemia [J].
Beke, Allan ;
Laplane, Lucie ;
Riviere, Julie ;
Yang, Qin ;
Torres-Martin, Miguel ;
Dayris, Thibault ;
Rameau, Philippe ;
Saada, Veronique ;
Bilhou-Nabera, Chrystele ;
Hurtado, Ana ;
Lordier, Larissa ;
Vainchenker, William ;
Figueroa, Maria E. ;
Droin, Nathalie ;
Solary, Eric .
HAEMATOLOGICA, 2020, 105 (01) :112-123