NP-completeness of local colorings of graphs

被引:4
|
作者
Li, Zepeng [1 ,2 ]
Zhu, Enqiang [3 ]
Shao, Zehui [3 ]
Xu, Jin [2 ]
机构
[1] Lanzhou Univ, Sch Informat Sci & Engn, Lanzhou 730000, Gansu, Peoples R China
[2] Peking Univ, Sch Elect Engn & Comp Sci, Beijing 100871, Peoples R China
[3] Guangzhou Univ, Res Inst Intelligence Software, Guangzhou 510006, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Local k-coloring; Local chromatic number; Planar graph; NP-complete; Computational complexity;
D O I
10.1016/j.ipl.2017.09.013
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A local k-coloring of a graph G is a function f : V (G) -> {1, 2, ..., k} such that for each S subset of V (G), 2 <= vertical bar S vertical bar <= 3, there exist u, v is an element of S with vertical bar f (u) - f(v)vertical bar at least the size of the subgraph induced by S. The local chromatic number of G is chi(l)(G) = min{k : G has a local k-coloring}. In this paper, we show that it is NP-complete to determine whether a graph has a local k-coloring for fixed k = 4 or k = 2t - 1, where t >= 3. In particular, it is NP-complete to determine whether a planar graph has a local 5-coloring even restricted to the maximum degree Delta = 7 or 8. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:25 / 29
页数:5
相关论文
共 50 条
  • [41] Extending Colorings of Planar Graphs
    Weihua Lu
    Han Ren
    Graphs and Combinatorics, 2019, 35 : 1161 - 1167
  • [42] Colorings of complements of line graphs
    Daneshpajouh, Hamid Reza
    Meunier, Frederic
    Mizrahi, Guilhem
    JOURNAL OF GRAPH THEORY, 2021, 98 (02) : 216 - 233
  • [43] On odd colorings of planar graphs
    Miao, Zhengke
    Sun, Lin
    Tu, Zhuojie
    Yu, Xiaowei
    DISCRETE MATHEMATICS, 2024, 347 (01)
  • [44] Injective colorings of sparse graphs
    Cranston, Daniel W.
    Kim, Seog-Jin
    Yu, Gexin
    DISCRETE MATHEMATICS, 2010, 310 (21) : 2965 - 2973
  • [45] Extending Colorings of Planar Graphs
    Lu, Weihua
    Ren, Han
    GRAPHS AND COMBINATORICS, 2019, 35 (05) : 1161 - 1167
  • [46] Hamiltonicity and colorings of arrangement graphs
    Felsner, Stefan
    Hurtado, Ferran
    Noy, Marc
    Streinu, Ileana
    DISCRETE APPLIED MATHEMATICS, 2006, 154 (17) : 2470 - 2483
  • [47] Acyclic edge colorings of planar graphs and seriesparallel graphs
    JianFeng Hou
    JianLiang Wu
    GuiZhen Liu
    Bin Liu
    Science in China Series A: Mathematics, 2009, 52 : 605 - 616
  • [48] Acyclic edge colorings of planar graphs and seriesparallel graphs
    Hou JianFeng
    Wu JianLiang
    Liu GuiZhen
    Liu Bin
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2009, 52 (03): : 605 - 616
  • [49] Acyclic colorings of graphs with bounded degree
    Anna Fiedorowicz
    Elżbieta Sidorowicz
    Science China Mathematics, 2016, 59 : 1427 - 1440
  • [50] Acyclic Total Colorings of Planar Graphs
    Sun, Xiang Yong
    Wu, Jian Liang
    ARS COMBINATORIA, 2015, 123 : 269 - 282