NP-completeness of local colorings of graphs

被引:4
|
作者
Li, Zepeng [1 ,2 ]
Zhu, Enqiang [3 ]
Shao, Zehui [3 ]
Xu, Jin [2 ]
机构
[1] Lanzhou Univ, Sch Informat Sci & Engn, Lanzhou 730000, Gansu, Peoples R China
[2] Peking Univ, Sch Elect Engn & Comp Sci, Beijing 100871, Peoples R China
[3] Guangzhou Univ, Res Inst Intelligence Software, Guangzhou 510006, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Local k-coloring; Local chromatic number; Planar graph; NP-complete; Computational complexity;
D O I
10.1016/j.ipl.2017.09.013
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A local k-coloring of a graph G is a function f : V (G) -> {1, 2, ..., k} such that for each S subset of V (G), 2 <= vertical bar S vertical bar <= 3, there exist u, v is an element of S with vertical bar f (u) - f(v)vertical bar at least the size of the subgraph induced by S. The local chromatic number of G is chi(l)(G) = min{k : G has a local k-coloring}. In this paper, we show that it is NP-complete to determine whether a graph has a local k-coloring for fixed k = 4 or k = 2t - 1, where t >= 3. In particular, it is NP-complete to determine whether a planar graph has a local 5-coloring even restricted to the maximum degree Delta = 7 or 8. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:25 / 29
页数:5
相关论文
共 50 条
  • [21] The NP-completeness of a tomographical problem on bicolored domino tilings
    Frosini, A
    Simi, G
    THEORETICAL COMPUTER SCIENCE, 2004, 319 (1-3) : 447 - 454
  • [22] On the local colorings of graphs
    Omoomi, Behnaz
    Pourmiri, Ali
    ARS COMBINATORIA, 2008, 86 : 147 - 159
  • [23] Local colorings of graphs
    Chartrand, G
    Saba, F
    Salehi, E
    Zhang, P
    UTILITAS MATHEMATICA, 2005, 67 : 107 - 120
  • [24] NP-completeness for calculating power indices of weighted majority games
    Matsui, Y
    Matsui, T
    THEORETICAL COMPUTER SCIENCE, 2001, 263 (1-2) : 305 - 310
  • [25] NP-completeness results for partitioning a graph into total dominating sets
    Koivisto, Mikko
    Laakkonen, Petteri
    Lauri, Juho
    THEORETICAL COMPUTER SCIENCE, 2020, 818 : 22 - 31
  • [26] A short proof of the NP-completeness of minimum sum interval coloring
    Marx, D
    OPERATIONS RESEARCH LETTERS, 2005, 33 (04) : 382 - 384
  • [27] NP-completeness of cell formation problem with grouping efficacy objective
    Batsyn, Mikhail, V
    Batsyna, Ekaterina K.
    Bychkov, Ilya S.
    INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, 2020, 58 (20) : 6159 - 6169
  • [28] An improved exact algorithm and an NP-completeness proof for sparse matrix bipartitioning
    Knigge, Timon E.
    Bisseling, Rob H.
    PARALLEL COMPUTING, 2020, 96 (96)
  • [29] On the NP-completeness of the Hartree-Fock method for translationally invariant systems
    Whitfield, James Daniel
    Zimboras, Zoltan
    JOURNAL OF CHEMICAL PHYSICS, 2014, 141 (23):
  • [30] NP-Completeness of an Optimization problem on Plants Selection using Reduction Method
    Johnpaul, C., I
    Mathew, Tojo
    2017 INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING, INSTRUMENTATION AND CONTROL TECHNOLOGIES (ICICICT), 2017, : 176 - 181