NP-completeness of local colorings of graphs

被引:4
|
作者
Li, Zepeng [1 ,2 ]
Zhu, Enqiang [3 ]
Shao, Zehui [3 ]
Xu, Jin [2 ]
机构
[1] Lanzhou Univ, Sch Informat Sci & Engn, Lanzhou 730000, Gansu, Peoples R China
[2] Peking Univ, Sch Elect Engn & Comp Sci, Beijing 100871, Peoples R China
[3] Guangzhou Univ, Res Inst Intelligence Software, Guangzhou 510006, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Local k-coloring; Local chromatic number; Planar graph; NP-complete; Computational complexity;
D O I
10.1016/j.ipl.2017.09.013
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A local k-coloring of a graph G is a function f : V (G) -> {1, 2, ..., k} such that for each S subset of V (G), 2 <= vertical bar S vertical bar <= 3, there exist u, v is an element of S with vertical bar f (u) - f(v)vertical bar at least the size of the subgraph induced by S. The local chromatic number of G is chi(l)(G) = min{k : G has a local k-coloring}. In this paper, we show that it is NP-complete to determine whether a graph has a local k-coloring for fixed k = 4 or k = 2t - 1, where t >= 3. In particular, it is NP-complete to determine whether a planar graph has a local 5-coloring even restricted to the maximum degree Delta = 7 or 8. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:25 / 29
页数:5
相关论文
共 50 条
  • [1] The NP-completeness of (1,r)-subcolorability of cubic graphs
    Le, HO
    Le, VB
    INFORMATION PROCESSING LETTERS, 2002, 81 (03) : 157 - 162
  • [2] NP-completeness and APX-completeness of restrained domination in graphs
    Chen, Lei
    Zeng, Weiming
    Lu, Changhong
    THEORETICAL COMPUTER SCIENCE, 2012, 448 : 1 - 8
  • [3] NP-COMPLETENESS
    SCHNEIER, B
    DR DOBBS JOURNAL, 1994, 19 (10): : 119 - 121
  • [4] NP-Completeness of st-orientations for plane graphs
    Sadasivam, Sadish
    Zhang, Huaming
    THEORETICAL COMPUTER SCIENCE, 2010, 411 (7-9) : 995 - 1003
  • [5] NP-completeness in hedonic games
    Ballester, C
    GAMES AND ECONOMIC BEHAVIOR, 2004, 49 (01) : 1 - 30
  • [6] NP-COMPLETENESS OF SLOPE-CONSTRAINED DRAWING OF COMPLETE GRAPHS
    Pilatte, Cedric
    JOURNAL OF COMPUTATIONAL GEOMETRY, 2020, 11 (01) : 371 - 396
  • [7] NP-completeness of the game Kingdomino™
    Viet-Ha Nguyen
    Perrot, Kevin
    Vallet, Mathieu
    THEORETICAL COMPUTER SCIENCE, 2020, 822 : 23 - 35
  • [8] Nonuniform Reductions and NP-Completeness
    John M. Hitchcock
    Hadi Shafei
    Theory of Computing Systems, 2022, 66 : 743 - 757
  • [9] Nonuniform Reductions and NP-Completeness
    Hitchcock, John M.
    Shafei, Hadi
    THEORY OF COMPUTING SYSTEMS, 2022, 66 (04) : 743 - 757
  • [10] Nonuniform Reductions and NP-Completeness
    Hitchcock, John M.
    Shafei, Hadi
    35TH SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE (STACS 2018), 2018, 96