NP-completeness of local colorings of graphs

被引:4
作者
Li, Zepeng [1 ,2 ]
Zhu, Enqiang [3 ]
Shao, Zehui [3 ]
Xu, Jin [2 ]
机构
[1] Lanzhou Univ, Sch Informat Sci & Engn, Lanzhou 730000, Gansu, Peoples R China
[2] Peking Univ, Sch Elect Engn & Comp Sci, Beijing 100871, Peoples R China
[3] Guangzhou Univ, Res Inst Intelligence Software, Guangzhou 510006, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Local k-coloring; Local chromatic number; Planar graph; NP-complete; Computational complexity;
D O I
10.1016/j.ipl.2017.09.013
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A local k-coloring of a graph G is a function f : V (G) -> {1, 2, ..., k} such that for each S subset of V (G), 2 <= vertical bar S vertical bar <= 3, there exist u, v is an element of S with vertical bar f (u) - f(v)vertical bar at least the size of the subgraph induced by S. The local chromatic number of G is chi(l)(G) = min{k : G has a local k-coloring}. In this paper, we show that it is NP-complete to determine whether a graph has a local k-coloring for fixed k = 4 or k = 2t - 1, where t >= 3. In particular, it is NP-complete to determine whether a planar graph has a local 5-coloring even restricted to the maximum degree Delta = 7 or 8. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:25 / 29
页数:5
相关论文
共 13 条
[1]  
[Anonymous], C NUMER
[2]  
[Anonymous], 1979, Computers and Intractablity: A Guide to the Theory of NP-Completeness
[3]  
Bondy J.A., 2008, U S R MURRY GRAPH TH
[4]  
Chartrand G, 2005, UTILITAS MATHEMATICA, V67, P107
[5]  
Cook S. A., 1971, Proceedings of the 3rd annual ACM symposium on theory of computing, P151
[6]   COLORING GRAPHS WITH LOCALLY FEW COLORS [J].
ERDOS, P ;
FUREDI, Z ;
HAJNAL, A ;
KOMJATH, P ;
RODL, V ;
SERESS, A .
DISCRETE MATHEMATICS, 1986, 59 (1-2) :21-34
[7]   A generalization of Kneser's conjecture [J].
Hajiabolhassan, Hossein .
DISCRETE MATHEMATICS, 2011, 311 (23-24) :2663-2668
[8]  
Jensen T., 1995, Graph Coloring Problems, P115
[9]  
KARP R. M., 1972, REDUCIBILITY COMBINA, V85-103, DOI [10.1007/978-3-540-68279-08, DOI 10.1007/978-3-540-68279-08]
[10]   Local colourings of Cartesian product graphs [J].
Klavzar, Sandi ;
Shao, Zehui .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2015, 92 (04) :694-699