Four-state ferroelectric spin-valve

被引:36
|
作者
Quindeau, Andy [1 ]
Fina, Ignasi [1 ,2 ]
Marti, Xavi [3 ,4 ]
Apachitei, Geanina [2 ]
Ferrer, Pilar [5 ]
Nicklin, Chris [5 ]
Pippel, Eckhard [1 ]
Hesse, Dietrich [1 ]
Alexe, Marin [1 ,2 ]
机构
[1] Max Planck Inst Microstruct Phys, D-06120 Halle, Germany
[2] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England
[3] ASCR, Inst Phys, Vvi, Prague 16253 6, Czech Republic
[4] CSIC, ICN, Ctr Invest Nanociencia & Nanotechnol ICN2, Barcelona 08193, Spain
[5] Diamond Light Source, Didcot OX11 0DE, Oxon, England
来源
SCIENTIFIC REPORTS | 2015年 / 5卷
关键词
GIANT MAGNETORESISTANCE; TUNNEL-JUNCTIONS;
D O I
10.1038/srep09749
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Spin-valves had empowered the giant magnetoresistance (GMR) devices to have memory. The insertion of thin antiferromagnetic (AFM) films allowed two stable magnetic field-induced switchable resistance states persisting in remanence. In this letter, we show that, without the deliberate introduction of such an AFM layer, this functionality is transferred to multiferroic tunnel junctions (MFTJ) allowing us to create a four-state resistive memory device. We observed that the ferroelectric/ferromagnetic interface plays a crucial role in the stabilization of the exchange bias, which ultimately leads to four robust electro tunnel electro resistance (TER) and tunnel magneto resistance (TMR) states in the junction.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Multilayer spin-valve CoFeP/Cu nanowires with giant magnetoresistance
    Sharko, S. A.
    Serokurova, A. I.
    Zubar, T. I.
    Trukhanov, S. V.
    Tishkevich, D. I.
    Samokhvalov, A. A.
    Kozlovskiy, A. L.
    Zdorovets, M. V.
    Panina, L. V.
    Fedosyuk, V. M.
    Trukhanov, A. V.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 846 (846)
  • [22] Enhanced spin-valve effect in magnetically doped carbon nanotubes
    Kirwan, D. F.
    de Menezes, V. M.
    Rocha, C. G.
    Costa, A. T.
    Muniz, R. B.
    Fagan, S. B.
    Ferreira, M. S.
    CARBON, 2009, 47 (10) : 2533 - 2537
  • [23] Magnetotransport properties of spin-valve structures with Mg spacer layers
    Martinez-Boubeta, C.
    Ferrante, Y.
    Parkin, S. S. P.
    APPLIED PHYSICS LETTERS, 2015, 106 (03)
  • [24] Spin-Valve based magnetoresistive nanoparticle detector for applications in biosensing
    Qiu, Wenlan
    Chang, Long
    Liang, Yu-Chi
    Litvinov, Julia
    Guo, Jing
    Chen, Yi-Ting
    Vu, Binh
    Kourentzi, Katerina
    Xu, Shoujun
    Lee, T. Randall
    Zu, Youli
    Willson, Richard C.
    Litvinov, Dmitri
    SENSORS AND ACTUATORS A-PHYSICAL, 2017, 265 : 174 - 180
  • [26] Design, fabrication, and analysis of a spin-valve based current sensor
    Reig, C
    Ramírez, D
    Silva, F
    Bernardo, J
    Freitas, P
    SENSORS AND ACTUATORS A-PHYSICAL, 2004, 115 (2-3) : 259 - 266
  • [27] Spin-valve and pseudo-spin-valve device switching for giant magnetoresistive random access memory applications
    Katti, RR
    Zou, D
    Reed, D
    Kaakani, H
    IEEE TRANSACTIONS ON MAGNETICS, 2003, 39 (05) : 2848 - 2850
  • [28] Gate-dependent spin-torque in a nanoconductor-based spin-valve
    Cottet, Audrey
    PHYSICAL REVIEW B, 2011, 84 (05)
  • [29] Thermally induced fluctuations of spin accumulation in lateral spin-valve structures and impact on noise
    Strelkov, Nikita
    Vedyaev, Anatoly
    Ryzhanova, Natalia
    Dieny, Bernard
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2023, 56 (03)
  • [30] Influence of magnetic scattering on superconductivity of ferromagnet/superconductor/ferromagnet spin-valve
    Peng, Lin
    Cai, Chuanbing
    Chen, Changzhao
    Liu, Zhiyong
    Gao, Bo
    PHYSICS LETTERS A, 2009, 373 (26) : 2273 - 2276