Non-enzymatic hydrogen peroxide sensor based on graphene quantum dots-chitosan/methylene blue hybrid nanostructures

被引:84
|
作者
Mollarasouli, Fariba [1 ,2 ]
Asadpour-Zeynali, Karim [1 ]
Campuzano, Susana [2 ]
Yanez-Sedeno, Paloma [2 ]
Pingarron, Jose M. [2 ,3 ]
机构
[1] Univ Tabriz, Dept Analyt Chem, Fac Chem, Tabriz 5166616471, Iran
[2] Univ Complutense Madrid, Fac Ciencias Quim, Dept Quim Analit, E-28040 Madrid, Spain
[3] IMDEA Nanosci, Ciudad Univ Cantoblanco, Madrid 28049, Spain
关键词
Graphene quantum dots (GQDs); Methylene blue (MB); Chitosan (CS); Non-enzymatic electrochemical sensor; H2O2; METHYLENE-BLUE; AMPEROMETRIC DETERMINATION; FACILE SYNTHESIS; WASTE-WATER; LIVE CELLS; NANOPARTICLES; CARBON; CHEMILUMINESCENCE; ELECTRODE; H2O2;
D O I
10.1016/j.electacta.2017.06.003
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Graphene quantum dots (GQDs) functionalized with chitosan (GQDs-CS) were used for the first time as a suitable nanostructured sensing film for efficient immobilization of methylene blue (MB) through aminohydroxyl reaction to prepare a novel non-enzymatic hydrogen peroxide sensor using a glassy carbon electrode (GCE). The synthesized hybrid nanostructures were characterized by X-ray diffraction, field emission scanning electron microscopy, cyclic voltammetry, FT-IR, UV-vis, photoluminescence, and energy dispersive X-ray spectroscopy techniques. Cyclic voltammograms showed that the GQDs-CS/MB/GCE exhibited a significant electrocatalytic activity for the reduction of H2O2. The calculated k(cat) is 4.45 x 10(4)cm(3)mol(-1)s(-1). The calibration graph for H2O2 constructed by amperometry (-0.6 V vs. SCE) at the modified electrode showed two different linear ranges (1.0 x 10(-6)-2.9 x 10(-3)M and 2.9-11.78 mM) with a sensitivity of 10.115 mu A/mM for the lower linear range and a calculated detection limit of 0.7 mu M (S/N = 3). The response time of the sensor for H2O2 detection was 3s. The electrochemical response of GQDs-CS/MB/GCE is not influenced by potential interferents (ascorbic and uric acids, dopamine, caffeine, glucose, and various inorganic salts). This modified electrode exhibited suitability for the non-enzymatic H2O2 sensing in food and water samples. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:303 / 314
页数:12
相关论文
共 50 条
  • [1] A non-enzymatic electrochemical hydrogen peroxide sensor based on copper oxide nanostructures
    Mihailova, Irena
    Gerbreders, Vjaceslavs
    Krasovska, Marina
    Sledevskis, Eriks
    Mizers, Valdis
    Bulanovs, Andrejs
    Ogurcovs, Andrejs
    BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 2022, 13 : 424 - 436
  • [2] Non-Enzymatic Amperometric Sensing of Hydrogen Peroxide Based on Vanadium Pentoxide Nanostructures
    Ghanei-Motlagh, Masoud
    Taher, Mohammad Ali
    Fayazi, Maryam
    Baghayeri, Mehdi
    Hosseinifar, AbduRahman
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2019, 166 (06) : B367 - B372
  • [3] Nanoporous gold as non-enzymatic sensor for hydrogen peroxide
    Meng, Fanhui
    Yan, Xiuling
    Liu, Jianguo
    Gu, Jun
    Zou, Zhigang
    ELECTROCHIMICA ACTA, 2011, 56 (12) : 4657 - 4662
  • [4] Facile synthesis of carbon quantum dots and thin graphene sheets for non-enzymatic sensing of hydrogen peroxide
    Sadhukhan, Mriganka
    Bhowmik, Tanmay
    Kundu, Manas Kumar
    Barman, Sudip
    RSC ADVANCES, 2014, 4 (10): : 4998 - 5005
  • [5] Laser-induced Graphene-based Non-enzymatic Sensor for Detection of Hydrogen Peroxide
    Zhang, Yuhan
    Zhu, Huichao
    Sun, Pin
    Sun, Chang-Kai
    Huang, Hui
    Guan, Shui
    Liu, Hailong
    Zhang, Hangyu
    Zhang, Chi
    Qin, Kai-Rong
    ELECTROANALYSIS, 2019, 31 (07) : 1334 - 1341
  • [6] Construction of a selective non-enzymatic electrochemical sensor based on hollow nickel nanospheres/carbon dots-chitosan and molecularly imprinted polymer film for the detection of glucose
    Wu, Haiyan
    Zheng, Wei
    Jiang, Yan
    Xu, Jicheng
    Qiu, Fengxian
    NEW JOURNAL OF CHEMISTRY, 2021, 45 (46) : 21676 - 21683
  • [7] Facile synthesis of copper oxide nanostructures and their application in non-enzymatic hydrogen peroxide sensing
    Gao, Peng
    Liu, Dawei
    SENSORS AND ACTUATORS B-CHEMICAL, 2015, 208 : 346 - 354
  • [8] Urchin-like Ag Nanowires as Non-enzymatic Hydrogen Peroxide Sensor
    Hsiao, Wei-Han
    Chen, Hsin-Yu
    Cheng, Ta-Ming
    Huang, Ting-Kai
    Chen, Yu-Liang
    Lee, Chi-Young
    Chiu, Hsin-Tien
    JOURNAL OF THE CHINESE CHEMICAL SOCIETY, 2012, 59 (04) : 500 - 506
  • [9] \A sonoelectrochemical preparation of graphene nanosheets with graphene quantum dots for their use as a hydrogen peroxide sensor
    Liu, Zhe-Ting
    Ye, Jyun-Sian
    Hsu, Su-Yang
    Lee, Chien-Liang
    ELECTROCHIMICA ACTA, 2018, 261 : 530 - 536
  • [10] A Non-Enzymatic Hydrogen Peroxide Sensor Based on Ag/MnOOH Nanocomposites
    Bai, Wushuang
    Zheng, Jianbin
    Sheng, Qinglin
    ELECTROANALYSIS, 2013, 25 (10) : 2305 - 2311