Existence and regularity of inverse problem for the nonlinear fractional Rayleigh-Stokes equations

被引:24
作者
Ngoc Tran Bao [1 ]
Luc Nguyen Hoang [2 ,3 ]
Au Vo Van [1 ]
Huy Tuan Nguyen [4 ]
Zhou, Yong [5 ,6 ]
机构
[1] Duy Tan Univ, Inst Res Dev, Da Nang 550000, Vietnam
[2] Univ Sci, Dept Math & Comp Sci, Ho Chi Minh City, Vietnam
[3] Vietnam Natl Univ, Ho Chi Minh City, Vietnam
[4] Ton Duc Thang Univ, Fac Math Stat, Appl Anal Res Grp, Ho Chi Minh City, Vietnam
[5] Macau Univ Sci Technol, Fac Informat Technol, Macau 999078, Peoples R China
[6] Xiangtan Univ, Fac Math Computat Sci, Xiangtan 411105, Hunan, Peoples R China
关键词
Fractional Rayleigh-Stokes equation; backward problem; existence; regularity; GENERALIZED 2ND-GRADE FLUID; SUBJECT; TERM;
D O I
10.1002/mma.6162
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper investigates an inverse problem for fractional Rayleigh-Stokes equations with nonlinear source. The fractional derivative in time is taken in the sense of Riemann-Liouville. The proposed problem has many applications in some non-Newtonian fluids. We obtain some results on the existence and regularity of mild solutions.
引用
收藏
页码:2532 / 2558
页数:27
相关论文
共 22 条
[1]   Extended Riemann-Liouville type fractional derivative operator with applications [J].
Agarwal, P. ;
Nieto, Juan J. ;
Luo, M. -J. .
OPEN MATHEMATICS, 2017, 15 :1667-1681
[2]   Identification of source term for the Rayleigh-Stokes problem with Gaussian random noise [J].
Anh Triet Nguyen ;
Vu Cam Hoan Luu ;
Hoang Luc Nguyen ;
Huy Tuan Nguyen ;
Van Thinh Nguyen .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (14) :5593-5601
[3]   Fractional powers of sectorial operators via the Dirichlet-to-Neumann operator [J].
Arendt, W. ;
ter Elst, A. F. M. ;
Warma, M. .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2018, 43 (01) :1-24
[4]  
Baleanu D., 2010, New trends in nanotechnology and fractional calculus applications
[5]  
Baleanu D., 2012, Fractional Calculus Models and Numerical Methods, Series on Complexity, Nonlinearity and Chaos, VVolume 3, DOI DOI 10.1142/8180
[6]   An analysis of the Rayleigh-Stokes problem for a generalized second-grade fluid [J].
Bazhlekova, Emilia ;
Jin, Bangti ;
Lazarov, Raytcho ;
Zhou, Zhi .
NUMERISCHE MATHEMATIK, 2015, 131 (01) :1-31
[7]   Numerical methods of the variable-order Rayleigh-Stokes problem for a heated generalized second grade fluid with fractional derivative [J].
Chen, Chang-Ming ;
Liu, F. ;
Burrage, K. ;
Chen, Y. .
IMA JOURNAL OF APPLIED MATHEMATICS, 2013, 78 (05) :924-944
[9]   A finite element method for the numerical solution of Rayleigh-Stokes problem for a heated generalized second grade fluid with fractional derivatives [J].
Dehghan, Mehdi ;
Abbaszadeh, Mostafa .
ENGINEERING WITH COMPUTERS, 2017, 33 (03) :587-605
[10]   The one-dimensional heat equation subject to a boundary integral specification [J].
Dehghan, Mehdi .
CHAOS SOLITONS & FRACTALS, 2007, 32 (02) :661-675