Biomimetic approach to cardiac tissue engineering

被引:121
作者
Radisic, M.
Park, H.
Gerecht, S.
Cannizzaro, C.
Langer, R.
Vunjak-Novakovic, G.
机构
[1] Columbia Univ, Dept Biomed Engn, New York, NY 10027 USA
[2] Univ Toronto, Inst Biomat & Biomed Engn, Toronto, ON M5S 3G9, Canada
[3] Univ Toronto, Dept Chem Engn & Appl Chem, Toronto, ON M5S 3G9, Canada
[4] Harvard Univ, MIT, Div Hlth Sci & Technol, Cambridge, MA 02139 USA
关键词
tissue engineering; cardiac; bioreactor; oxygen; vascularization; development;
D O I
10.1098/rstb.2007.2121
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Here, we review an approach to tissue engineering of functional myocardium that is biomimetic in nature, as it involves the use of culture systems designed to recapitulate some aspects of the actual in vivo environment. To mimic the capillary network, subpopulations of neonatal rat heart cells were cultured on a highly porous elastomer scaffold with a parallel array of channels perfused with culture medium. To mimic oxygen supply by haernoglobin, the culture medium was supplemented with a perfluorocarbon (PFC) emulsion. Constructs cultivated in the presence of PFC contained higher amounts of DNA and cardiac markers and had significantly better contractile properties than control constructs cultured without PFC. To induce synchronous contractions of cultured constructs, electrical signals mimicking those in native heart were applied. Over only 8 days of cultivation, electrical stimulation induced cell alignment and coupling, markedly increased the amplitude of synchronous construct contractions and resulted in a remarkable level of ultrastructural organization. The biomimetic approach is discussed in the overall context of cardiac tissue engineering, and the possibility to engineer functional human cardiac grafts based on human stem cells.
引用
收藏
页码:1357 / 1368
页数:12
相关论文
共 83 条
[1]   Cardiac organogenesis in vitro:: Reestablishment of three-dimensional tissue architecture by dissociated neonatal rat ventricular cells [J].
Akins, RE ;
Boyce, RA ;
Madonna, ML ;
Schroedl, NA ;
Gonda, SR ;
McLaughlin, TA ;
Hartzell, CR .
TISSUE ENGINEERING, 1999, 5 (02) :103-118
[2]   Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium [J].
Balsam, LB ;
Wagers, AJ ;
Christensen, JL ;
Kofidis, T ;
Weissman, IL ;
Robbins, RC .
NATURE, 2004, 428 (6983) :668-673
[3]   Adult cardiac stem cells are multipotent and support myocardial regeneration [J].
Beltrami, AP ;
Barlucchi, L ;
Torella, D ;
Baker, M ;
Limana, F ;
Chimenti, S ;
Kasahara, H ;
Rota, M ;
Musso, E ;
Urbanek, K ;
Leri, A ;
Kajstura, J ;
Nadal-Ginard, B ;
Anversa, P .
CELL, 2003, 114 (06) :763-776
[4]  
BRILLA CG, 1995, HERZ, V20, P127
[5]   Cardiac fibrosis as a cause of diastolic dysfunction [J].
Burlew, BS ;
Weber, KT .
HERZ, 2002, 27 (02) :92-98
[6]   Cardiac muscle tissue engineering: toward an in vitro model for electrophysiological studies [J].
Bursac, N ;
Papadaki, M ;
Cohen, RJ ;
Schoen, FJ ;
Eisenberg, SR ;
Carrier, R ;
Vunjak-Novakovic, G ;
Freed, LE .
AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 1999, 277 (02) :H433-H444
[7]   Cultivation in rotating bioreactors promotes maintenance of cardiac myocyte electrophysiology and molecular properties [J].
Bursac, N ;
Papadaki, M ;
White, JA ;
Eisenberg, SR ;
Vunjak-Novakovic, G ;
Freed, LE .
TISSUE ENGINEERING, 2003, 9 (06) :1243-1253
[8]  
Carrier RL, 1999, BIOTECHNOL BIOENG, V64, P580, DOI 10.1002/(SICI)1097-0290(19990905)64:5<580::AID-BIT8>3.0.CO
[9]  
2-X
[10]   Perfusion improves tissue architecture of engineered cardiac muscle [J].
Carrier, RL ;
Rupnick, M ;
Langer, R ;
Schoen, FJ ;
Freed, LE ;
Vunjak-Novakovic, G .
TISSUE ENGINEERING, 2002, 8 (02) :175-188